The material in this work is focused on recent developments in research into the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancements in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed.
Geomaterials exhibit complex but rich mechanical behaviour with a variety of failure modes ranging from diffuse to localized deformation depending on stress, density, microstructure, and loading conditions. These failure modes are a result of an instability of material and/or geometric nature that can be studied within the framework of bifurcation theory. Degradation is another related phenomenon arising from cyclic loading, ageing, weathering, chemical attack, and capillary effects, among others. The methodology of analyzing the various types of instabilities is crucial in the adequate modelling and safe design of numerous problems in geomechanics. The present volume contains a sampling of enlarged versions of papers presented at the International Workshop on Bifurcation and Degradations in Geomaterials (IWBDG 2008) held in Lake Louise, Alberta, Canada, May 28-31, 2008. These papers capture the state-of-the-art in the specialized field of geomechanics and contemporary approaches to solving the central issue of failure. Some engineering applications are presented in the areas of energy resource extraction and soil-machine interaction.
This book is the international edition of the proceedings of IS-Seoul 2011, the Fifth International Symposium on Deformation Characteristics of Geomaterials, held in Seoul, South Korea, in September 2011.The book includes 7 invited lectures, as well as 158 technical papers selected from the 182 submitted. The symposium explored ideas about the complex load-deformation response in geomaterials, including laboratory methods for small and large strains; anisotropy and localization; time-dependent responses in soils; characteristics of treated, unsaturated, and natural geomaterials; applications in field methods; evaluation of field performance in geotechnical structures; and physical and numerical modeling in geomechanics. These topics were grouped under a number of main themes, including experimental investigations from very small strains to beyond failure; behavior, characterization and modeling of various geomaterials; and practical prediction and interpretation of ground response: field observation and case histories. Both the symposium and this book represent an important contribution to the exchange of advanced knowledge and ideas in geotechnical engineering and promote partnership among participants worldwide.
Solutions for soil engineering and soil-structure interaction problems need realistic and pertinent experimental and modelling tools. In this work, extensive developments proposed by the invited speakers of the Lyon International Symposium held in September 2003 are presented, including experimental investigations into deformation properties; laboratory, in-situ and field observation interpretations; behaviour characterisation and modelling; and case histories. The contributions include recent investigations into anisotropy and non-linearity, the effects of stress-strain-time history, ageing and time effects, yielding, failure and flow, cyclic and dynamic behaviour. In addition, advanced geotechnical testing is applied to real engineering problems, and to ways of synthesising information from a range of sources while engaging in practical site characterisation studies.
Validation of Dynamic Analyses of Dams and Their Equipment is the outcome of a three year cooperation program between CFBR (Comite Francais des Barrages et Reservoirs or French Committee on Large dams) and JCOLD (Japan Commission on Large Dams), and focusses on the dynamic behavior of concrete and embankment dams analyzed based on acceleration records of the JCOLD data base. The book covers a broad range of topics, including simplified and detailed methods of dynamic analysis for the seismic response of concrete and embankment dams compared with measured behavior. The response of embankment dams subjected to a 1.0 g foundation acceleration time history is computed by several analytical methods and compared. The modelling of stress-strain behavior of compacted soils for seismic stability analysis of earth-fill dams and its application for a failed earthfill dam is described. The cracking of the face slab of four faced rockfill dams during earthquakes is analyzed. The seismic behavior of concrete arch dams is discussed by the comparison of numerical and experimental results. Displacement-based seismic assessment of concrete dams is presented. Finally the book contains a comparison between the Japanese and French design criteria of gates and a comparison of the analysis of gates and field measurements. Validation of Dynamic Analyses of Dams and Their Equipment will be useful to professional and academics involved or interested in dam engineering.
What's New in the Fourth Edition:The fourth edition further examines the relationships between the maximum and minimum void ratios of granular soils and adds the American Association of State Highway and Transportation Officials (AASHTO) soil classification system. It summarizes soil compaction procedures and Proctor compaction tests. It introduces
"Look out, Socrates! Here comes Connie Hamilton, the newest innovator of questionology! -- Marcia Gutiérrez, High School Educator A fresh perspective on the art of questioning Questions are the driving force of learning in classrooms. Hacking Questions digs into framing, delivering, and maximizing questions in the classroom to keep students engaged in learning. Known in education circles as the "Questioning Guru," Connie Hamilton shows teachers of all subjects and grades how to: Hear the music: listen for correct answers Scaffold to trigger student thinking without doing it for them Kick the IDK bucket to avoid "I don't know" as the final answer Punctuate your learning time to end with reflection questions Spin the throttle to fuel students to ask the questions Fill your back pocket with engagement questions Make yourself invisible by establishing student-centered protocols Be a Pinball Wizard and turn students into facilitators Praise for Connie Hamilton and Hacking Questions "Connie Hamilton is known by teachers and leaders as the Questioning Guru. She offers minor tweaks and major perspective shifts. You will be a better questioner tomorrow." -Dr. Dorothy VanderJagt, Professional Learning Coordinator "Connie Hamilton is a world-class presenter with expertise in the art of questioning. She provides a fresh perspective and practical tips on integrating research-based strategies." -Melisa Mulder, Intervention Teacher "Connie is an incredible driver of change in our focus on classroom questioning as a best practice instructional strategy." -Troy VanderLaan, Middle School Administrator Answers to your questions about questions Hacking Questions provides practical solutions to the universal questioning problems that teachers face daily. Find your answers now.
The first Pan-American Conference on Soil Mechanics and Geotechnical Engineering (PCSMGE) was held in Mexico in 1959. Every 4 years since then, PCSMGE has brought together the geotechnical engineering community from all over the world to discuss the problems, solutions and future challenges facing this engineering sector. Sixty years after the first conference, the 2019 edition returns to Mexico. This book, Geotechnical Engineering in the XXI Century: Lessons learned and future challenges, presents the proceedings of the XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XVI PCSMGE), held in Cancun, Mexico, from 17 – 20 November 2019. Of the 393 full papers submitted, 335 were accepted for publication after peer review. They are included here organized into 19 technical sessions, and cover a wide range of themes related to geotechnical engineering in the 21st century. Topics covered include: laboratory and in-situ testing; analytical and physical modeling in geotechnics; numerical modeling in geotechnics; unsaturated soils; soft soils; foundations and retaining structures; excavations and tunnels; offshore geotechnics; transportation in geotechnics; natural hazards; embankments and tailings dams; soils dynamics and earthquake engineering; ground improvement; sustainability and geo-environment; preservation of historic sites; forensics engineering; rock mechanics; education; and energy geotechnics. Providing a state-of-the-art overview of research into innovative and challenging applications in the field, the book will be of interest to all those working in soil mechanics and geotechnical engineering. In this proceedings, 58% of the contributions are in English, and 42% of the contributions are in Spanish or Portuguese.