Modern industry, driven by the recent environmental policies, faces an urgent need for the production of lighter and more environmentally-friendly components. High-strength low-alloy steels are key materials in this challenging scenario because they provide a balanced combination of properties, such as strength, toughness, formability, weldability, and corrosion resistance. These features make them ideal for a myriad of engineering applications which experience complex loading conditions and aggressive media, such as aeronautical and automotive components, railway parts, offshore structures, oil and gas pipelines, power transmission towers, and construction machinery, among others. The goal of this book is to foster the dissemination of the latest research devoted to high-strength low-alloy (HSLA) steels from different perspectives.
A conference on Metallurgical Effects at High Strain Rates was held at Albuquerque, New Mexico, February 5 through 8, 1973, under joint sponsorship of Sandia Laboratories and the Physical Metallurgy Committee of The Metallurgical Society of AIME. This book presents the written proceedings of the meeting. The purpose of the conference was to gather scientists from diverse disciplines and stimulate interdisciplinary discussions on key areas of materials response at high strain rates. In this spirit, it was similar to one of the first highly successful con ferences on this subject held in 1960, in Estes Park, Colorado, on The Response of Metals to High Velocity Deformation. The 1973 conference was able to demonstrate rather directly the increased understanding of high strain rate effects in metals that has evolved over a period of roughly 12 years. In keeping with the interdisciplinary nature of the meeting, the first day was devoted to a tutorial session of invited papers to provide attendees of diverse backgrounds with a common basis of understanding. Sessions were then held with themes centered around key areas of the high strain rate behavior of metals.
The Science of Metallurgy Introduction to Metallurgy Brief History of Metallurgy Fundamental Concepts in Metallurgy The Periodic Table and Metals Crystal Structure of Metals Defects in Metallic Structures Diffusion Processes in Metals Phase Diagrams and Alloys Heat Treatment of Metals Mechanical Properties of Metals Corrosion and Oxidation of Metals Metallurgical Processes Applications of Metallurgy The Future of Metallurgy