Stochastic Equations in Infinite Dimensions

Stochastic Equations in Infinite Dimensions

Author: Da Prato Guiseppe

Publisher:

Published: 2013-11-21

Total Pages:

ISBN-13: 9781306148061

DOWNLOAD EBOOK

The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."


Stochastics in Finite and Infinite Dimensions

Stochastics in Finite and Infinite Dimensions

Author: Takeyuki Hida

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 436

ISBN-13: 1461201675

DOWNLOAD EBOOK

During the last fifty years, Gopinath Kallianpur has made extensive and significant contributions to diverse areas of probability and statistics, including stochastic finance, Fisher consistent estimation, non-linear prediction and filtering problems, zero-one laws for Gaussian processes and reproducing kernel Hilbert space theory, and stochastic differential equations in infinite dimensions. To honor Kallianpur's pioneering work and scholarly achievements, a number of leading experts have written research articles highlighting progress and new directions of research in these and related areas. This commemorative volume, dedicated to Kallianpur on the occasion of his seventy-fifth birthday, will pay tribute to his multi-faceted achievements and to the deep insight and inspiration he has so graciously offered his students and colleagues throughout his career. Contributors to the volume: S. Aida, N. Asai, K. B. Athreya, R. N. Bhattacharya, A. Budhiraja, P. S. Chakraborty, P. Del Moral, R. Elliott, L. Gawarecki, D. Goswami, Y. Hu, J. Jacod, G. W. Johnson, L. Johnson, T. Koski, N. V. Krylov, I. Kubo, H.-H. Kuo, T. G. Kurtz, H. J. Kushner, V. Mandrekar, B. Margolius, R. Mikulevicius, I. Mitoma, H. Nagai, Y. Ogura, K. R. Parthasarathy, V. Perez-Abreu, E. Platen, B. V. Rao, B. Rozovskii, I. Shigekawa, K. B. Sinha, P. Sundar, M. Tomisaki, M. Tsuchiya, C. Tudor, W. A. Woycynski, J. Xiong.


Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension

Author: Giorgio Fabbri

Publisher: Springer

Published: 2017-06-22

Total Pages: 928

ISBN-13: 3319530674

DOWNLOAD EBOOK

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.


Stochastic Equations in Infinite Dimensions

Stochastic Equations in Infinite Dimensions

Author: Giuseppe Da Prato

Publisher: Cambridge University Press

Published: 2014-04-17

Total Pages: 513

ISBN-13: 1107055849

DOWNLOAD EBOOK

Updates in this second edition include two brand new chapters and an even more comprehensive bibliography.


Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective

Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective

Author: René Carmona

Publisher: Springer Science & Business Media

Published: 2007-05-22

Total Pages: 236

ISBN-13: 3540270671

DOWNLOAD EBOOK

This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. From the reviews: "A wonderful book. The authors present some cutting-edge math." --WWW.RISKBOOK.COM


Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics

Author: Wilfried Grecksch

Publisher: World Scientific

Published: 2020-04-22

Total Pages: 261

ISBN-13: 9811209804

DOWNLOAD EBOOK

This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.


Infinite Dimensional Stochastic Analysis

Infinite Dimensional Stochastic Analysis

Author: Hui-Hsiung Kuo

Publisher: World Scientific

Published: 2008

Total Pages: 257

ISBN-13: 9812779558

DOWNLOAD EBOOK

This volume contains current work at the frontiers of research in infinite dimensional stochastic analysis. It presents a carefully chosen collection of articles by experts to highlight the latest developments in white noise theory, infinite dimensional transforms, quantum probability, stochastic partial differential equations, and applications to mathematical finance. Included in this volume are expository papers which will help increase communication between researchers working in these areas. The tools and techniques presented here will be of great value to research mathematicians, graduate students and applied mathematicians. Sample Chapter(s). Complex White Noise and the Infinite Dimensional Unitary Group (425 KB). Contents: Complex White Noise and the Infinite Dimensional Unitary Group (T Hida); Complex It Formulas (M Redfern); White Noise Analysis: Background and a Recent Application (J Becnel & A N Sengupta); Probability Measures with Sub-Additive Principal SzegAOCoJacobi Parameters (A Stan); Donsker''s Functional Calculus and Related Questions (P-L Chow & J Potthoff); Stochastic Analysis of Tidal Dynamics Equation (U Manna et al.); Adapted Solutions to the Backward Stochastic NavierOCoStokes Equations in 3D (P Sundar & H Yin); Spaces of Test and Generalized Functions of Arcsine White Noise Formulas (A Barhoumi et al.); An Infinite Dimensional Fourier-Mehler Transform and the L(r)vy Laplacian (K Saito & K Sakabe); The Heat Operator in Infinite Dimensions (B C Hall); Quantum Stochastic Dilation of Symmetric Covariant Completely Positive Semigroups with Unbounded Generator (D Goswami & K B Sinha); White Noise Analysis in the Theory of Three-Manifold Quantum Invariants (A Hahn); A New Explicit Formula for the Solution of the BlackOCoMertonOCoScholes Equation (J A Goldstein et al.); Volatility Models of the Yield Curve (V Goodman). Readership: Graduate-level researchers in stochastic analysis, mathematical physics and financial mathematic


Finite and Infinite Dimensional Analysis in Honor of Leonard Gross

Finite and Infinite Dimensional Analysis in Honor of Leonard Gross

Author: Hui-Hsiung Kuo

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 242

ISBN-13: 0821832026

DOWNLOAD EBOOK

This book contains the proceedings of the special session in honor of Leonard Gross held at the annual Joint Mathematics Meetings in New Orleans (LA). The speakers were specialists in a variety of fields, and many were Professor Gross's former Ph.D. students and their descendants. Papers in this volume present results from several areas of mathematics. They illustrate applications of powerful ideas that originated in Gross's work and permeate diverse fields. Topics include stochastic partial differential equations, white noise analysis, Brownian motion, Segal-Bargmann analysis, heat kernels, and some applications. The volume should be useful to graduate students and researchers. It provides perspective on current activity and on central ideas and techniques in the topics covered.


Infinite-dimensional Analysis: Operators In Hilbert Space; Stochastic Calculus Via Representations, And Duality Theory

Infinite-dimensional Analysis: Operators In Hilbert Space; Stochastic Calculus Via Representations, And Duality Theory

Author: Palle Jorgensen

Publisher: World Scientific

Published: 2021-01-15

Total Pages: 253

ISBN-13: 9811225796

DOWNLOAD EBOOK

The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.


Stochastic and Infinite Dimensional Analysis

Stochastic and Infinite Dimensional Analysis

Author: Christopher C. Bernido

Publisher: Birkhäuser

Published: 2016-08-10

Total Pages: 304

ISBN-13: 3319072455

DOWNLOAD EBOOK

This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.