Stochastic Partial Differential Equations and Related Fields

Stochastic Partial Differential Equations and Related Fields

Author: Andreas Eberle

Publisher: Springer

Published: 2018-07-03

Total Pages: 565

ISBN-13: 3319749293

DOWNLOAD EBOOK

This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.


Landscapes of Time-Frequency Analysis

Landscapes of Time-Frequency Analysis

Author: Paolo Boggiatto

Publisher: Springer

Published: 2019-01-30

Total Pages: 358

ISBN-13: 3030052109

DOWNLOAD EBOOK

The chapters in this volume are based on talks given at the inaugural Aspects of Time-Frequency Analysis conference held in Turin, Italy from July 5-7, 2017, which brought together experts in harmonic analysis and its applications. New connections between different but related areas were presented in the context of time-frequency analysis, encouraging future research and collaborations. Some of the topics covered include: Abstract harmonic analysis, Numerical harmonic analysis, Sampling theory, Compressed sensing, Mathematical signal processing, Pseudodifferential operators, and Applications of harmonic analysis to quantum mechanics. Landscapes of Time-Frequency Analysis will be of particular interest to researchers and advanced students working in time-frequency analysis and other related areas of harmonic analysis.


Probability on Algebraic and Geometric Structures

Probability on Algebraic and Geometric Structures

Author: Gregory Budzban

Publisher: American Mathematical Soc.

Published: 2016-06-29

Total Pages: 236

ISBN-13: 1470419459

DOWNLOAD EBOOK

This volume contains the proceedings of the International Research Conference “Probability on Algebraic and Geometric Structures”, held from June 5–7, 2014, at Southern Illinois University, Carbondale, IL, celebrating the careers of Philip Feinsilver, Salah-Eldin A. Mohammed, and Arunava Mukherjea. These proceedings include survey papers and new research on a variety of topics such as probability measures and the behavior of stochastic processes on groups, semigroups, and Clifford algebras; algebraic methods for analyzing Markov chains and products of random matrices; stochastic integrals and stochastic ordinary, partial, and functional differential equations.


Symplectic Integration of Stochastic Hamiltonian Systems

Symplectic Integration of Stochastic Hamiltonian Systems

Author: Jialin Hong

Publisher: Springer Nature

Published: 2023-02-21

Total Pages: 307

ISBN-13: 9811976708

DOWNLOAD EBOOK

This book provides an accessible overview concerning the stochastic numerical methods inheriting long-time dynamical behaviours of finite and infinite-dimensional stochastic Hamiltonian systems. The long-time dynamical behaviours under study involve symplectic structure, invariants, ergodicity and invariant measure. The emphasis is placed on the systematic construction and the probabilistic superiority of stochastic symplectic methods, which preserve the geometric structure of the stochastic flow of stochastic Hamiltonian systems. The problems considered in this book are related to several fascinating research hotspots: numerical analysis, stochastic analysis, ergodic theory, stochastic ordinary and partial differential equations, and rough path theory. This book will appeal to researchers who are interested in these topics.


Some Nonlinear Problems in Riemannian Geometry

Some Nonlinear Problems in Riemannian Geometry

Author: Thierry Aubin

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 414

ISBN-13: 3662130068

DOWNLOAD EBOOK

This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.


Nonlinear Dynamics and Stochastic Mechanics

Nonlinear Dynamics and Stochastic Mechanics

Author: Wolfgang Kliemann

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 560

ISBN-13: 1351083503

DOWNLOAD EBOOK

Engineering systems have played a crucial role in stimulating many of the modern developments in nonlinear and stochastic dynamics. After 20 years of rapid progress in these areas, this book provides an overview of the current state of nonlinear modeling and analysis for mechanical and structural systems. This volume is a coherent compendium written by leading experts from the United States, Canada, Western and Eastern Europe, and Australia. The 22 articles describe the background, recent developments, applications, and future directions in bifurcation theory, chaos, perturbation methods, stochastic stability, stochastic flows, random vibrations, reliability, disordered systems, earthquake engineering, and numerics. The book gives readers a sophisticated toolbox that will allow them to tackle modeling problems in mechanical systems that use stochastic and nonlinear dynamics ideas. An extensive bibliography and index ensure this volume will remain a reference standard for years to come.


New Approaches to Nonlinear Waves

New Approaches to Nonlinear Waves

Author: Elena Tobisch

Publisher: Springer

Published: 2015-08-19

Total Pages: 309

ISBN-13: 3319206907

DOWNLOAD EBOOK

The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.


Analytical Methods for Nonlinear Oscillators and Solitary Waves

Analytical Methods for Nonlinear Oscillators and Solitary Waves

Author: Chu-Hui He

Publisher: Frontiers Media SA

Published: 2023-11-24

Total Pages: 132

ISBN-13: 2832539637

DOWNLOAD EBOOK

The most well-known analytical method is the perturbation method, which has led to the great discovery of Neptune in 1846, and since then mathematical prediction and empirical observation became two sides of a coin in physics. However, the perturbation method is based on the small parameter assumption, and the obtained solutions are valid only for weakly nonlinear equations, which have greatly limited their applications to modern physical problems. To overcome the shortcomings, many mathematicians and physicists have been extensively developing various technologies for several centuries, however, there is no universal method for all nonlinear problems, and mathematical prediction with remarkably high accuracy is still much needed for modern physics, for example, the solitary waves traveling along an unsmooth boundary, the low-frequency property of a harvesting energy device, the pull-in voltage in a micro-electromechanical system. Now various effective analytical methods have appeared in the open literature, e.g., the homotopy perturbation method and the variational iteration method. An analytical solution provides a fast insight into its physical properties of a practical problem, e.g., frequency-amplitude relation of a nonlinear oscillator, solitary wave in an optical fiber, pull-in instability of a microelectromechanical system, making mathematical prediction even more attractive in modern physics. Nonlinear physics has been developing into a new stage, where the fractal-fractional differential equations have to be adopted to describe more accurately discontinuous problems, and it becomes ever more difficult to find an analytical solution for such nonlinear problems, and the analytical methods for fractal-fractional differential equations have laid the foundations for nonlinear physics.