Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
The famous Black-Scholes model was the starting point of a new financial industry and has been a very important pillar of all options trading since. One of its core assumptions is that the volatility of the underlying asset is constant. It was realised early that one has to specify a dynamic on the volatility itself to get closer to market behaviour. There are mainly two aspects making this fact apparent. Considering historical evolution of volatility by analysing time series data one observes erratic behaviour over time. Secondly, backing out implied volatility from daily traded plain vanilla options, the volatility changes with strike. The most common realisations of this phenomenon are the implied volatility smile or skew. The natural question arises how to extend the Black-Scholes model appropriately. Within this book the concept of stochastic volatility is analysed and discussed with special regard to the numerical problems occurring either in calibrating the model to the market implied volatility surface or in the numerical simulation of the two-dimensional system of stochastic differential equations required to price non-vanilla financial derivatives. We introduce a new stochastic volatility model, the so-called Hyp-Hyp model, and use Watanabe's calculus to find an analytical approximation to the model implied volatility. Further, the class of affine diffusion models, such as Heston, is analysed in view of using the characteristic function and Fourier inversion techniques to value European derivatives.
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.
Asymptotic analysis of stochastic stock price models is the central topic of the present volume. Special examples of such models are stochastic volatility models, that have been developed as an answer to certain imperfections in a celebrated Black-Scholes model of option pricing. In a stock price model with stochastic volatility, the random behavior of the volatility is described by a stochastic process. For instance, in the Hull-White model the volatility process is a geometric Brownian motion, the Stein-Stein model uses an Ornstein-Uhlenbeck process as the stochastic volatility, and in the Heston model a Cox-Ingersoll-Ross process governs the behavior of the volatility. One of the author's main goals is to provide sharp asymptotic formulas with error estimates for distribution densities of stock prices, option pricing functions, and implied volatilities in various stochastic volatility models. The author also establishes sharp asymptotic formulas for the implied volatility at extreme strikes in general stochastic stock price models. The present volume is addressed to researchers and graduate students working in the area of financial mathematics, analysis, or probability theory. The reader is expected to be familiar with elements of classical analysis, stochastic analysis and probability theory.
The Volatility Smile The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets. The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models. Topics covered include: The principles of valuation Static and dynamic replication The Black-Scholes-Merton model Hedging strategies Transaction costs The behavior of the volatility smile Implied distributions Local volatility models Stochastic volatility models Jump-diffusion models The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.
This is one of the only books to describe uncertain volatility models in mathematical finance and their computer implementation for portfolios of vanilla, barrier and American options in equity and FX markets. Uncertain volatility models place subjective constraints on the volatility of the stochastic process of the underlying asset and evaluate option portfolios under worst- and best-case scenarios. This book, which is bundled with software, is aimed at graduate students, researchers and practitioners who wish to study advanced aspects of volatility risk in portfolios of vanilla and exotic options. The reader is assumed to be familiar with arbitrage pricing theory.