Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Published: 2018-05-22
Total Pages: 44
ISBN-13: 9781719449342
DOWNLOAD EBOOKStochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report. Nemeth, Noel N. and Bednarcyk, Brett A. and Pineda, Evan J. and Walton, Owen J. and Arnold, Steven M. Glenn Research Center STOCHASTIC PROCESSES; MICROCRACKS; SIMULATION; CERAMIC MATRIX COMPOSITES; POLYMER MATRIX COMPOSITES; FINITE ELEMENT METHOD; MICROMECHANICS; SOFTWARE DEVELOPMENT TOOLS; SOFTWARE ENGINEERING; DAMAGE; BRITTLE MATERIALS; COMPOSITE STRUCTURES; CRACK INITIATION; CRACK PROPAGATION; FRACTURE MECHANICS; PROBABILITY THEORY; STRESS-STRAIN RELATIONSHIPS; STRUCTURAL ANALYSIS