Stochastic Spreading Processes on Networks

Stochastic Spreading Processes on Networks

Author: Aram Vajdi

Publisher:

Published: 2020

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Spreading processes appear in diverse natural and technological systems, such as the spread of infectious diseases and the dissemination of information. It has been demonstrated that the structure of interaction among population members can dramatically influence spreading dynamics. Therefore, researchers have focused on studying spreading processes over complex networks, where interaction among individuals could be highly heterogeneous. This dissertation aims to add to the current understanding of networked spreading processes by investigating various aspects of the Susceptible-Infected-Susceptible (SIS) model. Our first contribution is related to the inverse problem of continuous time SIS spreading over a graph. In other words, we show the possibility of inferring the underlying network from observations on the node states through time. We formulate the inverse problem as a Bayesian inference problem and find the posterior probabilities for the existence of uncertain links. Second, we study the SIS spreading process over time dependent networks, where the contact network's links are not permanent. To analyze the effect of link durations on the epidemic threshold of the SIS process, we develop a temporal network model. In this model, the temporal links result from the transition of nodes between two auxiliary node states, namely active and inactive. Combining the dynamics of the network and the spreading process, we derive the mean-field equations that describe SIS spreading processes over such temporal networks. The analysis of these equations reveals the effect of link durations on the epidemic threshold in the SIS process. Third, we study the localization of epidemics in the SIS process. In general, the SIS model has an absorbing state where all individuals are healthy. However, depending on the infection rate value, this process can reach a metastable state, where the infection does not die out. In this metastable state, some parts of the network can be disproportionately infected. We quantify the infection dispersion in the network, and formulate a convex optimization problem to find an upper bound for the dispersion of infection in the network. Finally, we focus on the estimation of spreading data from partially available information. In general, various spreading-related functions are defined over the nodes of a network. Assuming access to the values of a function for a subset of the nodes, we use the concept of effective resistance distance and feed forward neural networks, to estimate the function for the remaining nodes. Although this dissertation focuses on the SIS model, the methods we have presented and developed here are applicable to a broad range of stochastic networked spreading processes. The exact mathematical treatment of such processes is intractable due to their exponential space size, and therefore there are still various unknown aspects of their behavior that require further work. Our studies in this dissertation advance the current knowledge about networked spreading models.


Introduction to Stochastic Networks

Introduction to Stochastic Networks

Author: Richard Serfozo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 312

ISBN-13: 1461214823

DOWNLOAD EBOOK

Beginning with Jackson networks and ending with spatial queuing systems, this book describes several basic stochastic network processes, with the focus on network processes that have tractable expressions for the equilibrium probability distribution of the numbers of units at the stations. Intended for graduate students and researchers in engineering, science and mathematics interested in the basics of stochastic networks that have been developed over the last twenty years, the text assumes a graduate course in stochastic processes without measure theory, emphasising multi-dimensional Markov processes. Alongside self-contained material on point processes involving real analysis, the book also contains complete introductions to reversible Markov processes, Palm probabilities for stationary systems, Little laws for queuing systems and space-time Poisson processes.


Mathematics of Epidemics on Networks

Mathematics of Epidemics on Networks

Author: István Z. Kiss

Publisher: Springer

Published: 2017-06-08

Total Pages: 423

ISBN-13: 3319508067

DOWNLOAD EBOOK

This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.


Stochastic Networks and Queues

Stochastic Networks and Queues

Author: Philippe Robert

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 406

ISBN-13: 3662130521

DOWNLOAD EBOOK

Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks. In this book, various aspects of these stochastic models are investigated in depth in an elementary way: Existence of equilibrium, characterization of stationary regimes, transient behaviors (rare events, hitting times) and critical regimes, etc. A simple presentation of stationary point processes and Palm measures is given. Scaling methods and functional limit theorems are a major theme of this book. In particular, a complete chapter is devoted to fluid limits of Markov processes.


Stochastic Networks

Stochastic Networks

Author: Frank Kelly

Publisher: Cambridge University Press

Published: 2014-02-27

Total Pages: 233

ISBN-13: 1107035775

DOWNLOAD EBOOK

A compact, highly-motivated introduction to some of the stochastic models found useful in the study of communications networks.


Fundamentals of Stochastic Networks

Fundamentals of Stochastic Networks

Author: Oliver C. Ibe

Publisher: John Wiley & Sons

Published: 2011-08-24

Total Pages: 263

ISBN-13: 1118092988

DOWNLOAD EBOOK

An interdisciplinary approach to understanding queueing and graphical networks In today's era of interdisciplinary studies and research activities, network models are becoming increasingly important in various areas where they have not regularly been used. Combining techniques from stochastic processes and graph theory to analyze the behavior of networks, Fundamentals of Stochastic Networks provides an interdisciplinary approach by including practical applications of these stochastic networks in various fields of study, from engineering and operations management to communications and the physical sciences. The author uniquely unites different types of stochastic, queueing, and graphical networks that are typically studied independently of each other. With balanced coverage, the book is organized into three succinct parts: Part I introduces basic concepts in probability and stochastic processes, with coverage on counting, Poisson, renewal, and Markov processes Part II addresses basic queueing theory, with a focus on Markovian queueing systems and also explores advanced queueing theory, queueing networks, and approximations of queueing networks Part III focuses on graphical models, presenting an introduction to graph theory along with Bayesian, Boolean, and random networks The author presents the material in a self-contained style that helps readers apply the presented methods and techniques to science and engineering applications. Numerous practical examples are also provided throughout, including all related mathematical details. Featuring basic results without heavy emphasis on proving theorems, Fundamentals of Stochastic Networks is a suitable book for courses on probability and stochastic networks, stochastic network calculus, and stochastic network optimization at the upper-undergraduate and graduate levels. The book also serves as a reference for researchers and network professionals who would like to learn more about the general principles of stochastic networks.


Propagation Dynamics on Complex Networks

Propagation Dynamics on Complex Networks

Author: Xinchu Fu

Publisher: John Wiley & Sons

Published: 2013-12-17

Total Pages: 273

ISBN-13: 1118762819

DOWNLOAD EBOOK

Explores the emerging subject of epidemic dynamics on complex networks, including theories, methods, and real-world applications Throughout history epidemic diseases have presented a serious threat to human life, and in recent years the spread of infectious diseases such as dengue, malaria, HIV, and SARS has captured global attention; and in the modern technological age, the proliferation of virus attacks on the Internet highlights the emergent need for knowledge about modeling, analysis, and control in epidemic dynamics on complex networks. For advancement of techniques, it has become clear that more fundamental knowledge will be needed in mathematical and numerical context about how epidemic dynamical networks can be modelled, analyzed, and controlled. This book explores recent progress in these topics and looks at issues relating to various epidemic systems. Propagation Dynamics on Complex Networks covers most key topics in the field, and will provide a valuable resource for graduate students and researchers interested in network science and dynamical systems, and related interdisciplinary fields. Key Features: Includes a brief history of mathematical epidemiology and epidemic modeling on complex networks. Explores how information, opinion, and rumor spread via the Internet and social networks. Presents plausible models for propagation of SARS and avian influenza outbreaks, providing a reality check for otherwise abstract mathematical modeling. Considers various infectivity functions, including constant, piecewise-linear, saturated, and nonlinear cases. Examines information transmission on complex networks, and investigates the difference between information and epidemic spreading.


Stochastic Networks

Stochastic Networks

Author: Paul Glasserman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 305

ISBN-13: 146124062X

DOWNLOAD EBOOK

Two of the most exciting topics of current research in stochastic networks are the complementary subjects of stability and rare events - roughly, the former deals with the typical behavior of networks, and the latter with significant atypical behavior. Both are classical topics, of interest since the early days of queueing theory, that have experienced renewed interest mo tivated by new applications to emerging technologies. For example, new stability issues arise in the scheduling of multiple job classes in semiconduc tor manufacturing, the so-called "re-entrant lines;" and a prominent need for studying rare events is associated with the design of telecommunication systems using the new ATM (asynchronous transfer mode) technology so as to guarantee quality of service. The objective of this volume is hence to present a sample - by no means comprehensive - of recent research problems, methodologies, and results in these two exciting and burgeoning areas. The volume is organized in two parts, with the first part focusing on stability, and the second part on rare events. But it is impossible to draw sharp boundaries in a healthy field, and inevitably some articles touch on both issues and several develop links with other areas as well. Part I is concerned with the issue of stability in queueing networks.