Stochastic Models, Information Theory, and Lie Groups, Volume 1

Stochastic Models, Information Theory, and Lie Groups, Volume 1

Author: Gregory S. Chirikjian

Publisher: Springer Science & Business Media

Published: 2009-09-02

Total Pages: 397

ISBN-13: 0817648038

DOWNLOAD EBOOK

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.


Stochastic Models, Information Theory, and Lie Groups, Volume 2

Stochastic Models, Information Theory, and Lie Groups, Volume 2

Author: Gregory S. Chirikjian

Publisher: Springer Science & Business Media

Published: 2011-11-16

Total Pages: 461

ISBN-13: 0817649441

DOWNLOAD EBOOK

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises, motivating examples, and real-world applications make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.


Stochastic Models, Information Theory, and Lie Groups, Volume 1

Stochastic Models, Information Theory, and Lie Groups, Volume 1

Author: Gregory S. Chirikjian

Publisher: Birkhäuser

Published: 2009-09-15

Total Pages: 383

ISBN-13: 9780817648022

DOWNLOAD EBOOK

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.


Stochastic Models, Information Theory, and Lie Groups, Volume 2

Stochastic Models, Information Theory, and Lie Groups, Volume 2

Author: Gregory S. Chirikjian

Publisher: Springer Science & Business Media

Published: 2011-11-15

Total Pages: 460

ISBN-13: 0817649433

DOWNLOAD EBOOK

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises, motivating examples, and real-world applications make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.


Stochastic Processes in Cell Biology

Stochastic Processes in Cell Biology

Author: Paul C. Bressloff

Publisher: Springer Nature

Published: 2022-01-04

Total Pages: 773

ISBN-13: 3030725154

DOWNLOAD EBOOK

This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.


Algorithmic Foundations of Robotics VIII

Algorithmic Foundations of Robotics VIII

Author: Gregory S. Chirikjian

Publisher: Springer Science & Business Media

Published: 2010-02-04

Total Pages: 673

ISBN-13: 3642003117

DOWNLOAD EBOOK

This book contains selected contributions to WAFR, the highly-competitive meeting on the algorithmic foundations of robotics. They address the unique combination of questions that the design and analysis of robot algorithms inspires.


Harmonic Analysis for Engineers and Applied Scientists

Harmonic Analysis for Engineers and Applied Scientists

Author: Gregory S. Chirikjian

Publisher: Courier Dover Publications

Published: 2016-07-20

Total Pages: 881

ISBN-13: 0486795640

DOWNLOAD EBOOK

Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.