Stochastic Modeling

Stochastic Modeling

Author: Nicolas Lanchier

Publisher: Springer

Published: 2017-01-27

Total Pages: 305

ISBN-13: 3319500384

DOWNLOAD EBOOK

Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling

Author: Howard M. Taylor

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 410

ISBN-13: 1483269272

DOWNLOAD EBOOK

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.


Stochastic Modeling

Stochastic Modeling

Author: Barry L. Nelson

Publisher: Courier Corporation

Published: 2012-10-11

Total Pages: 338

ISBN-13: 0486139948

DOWNLOAD EBOOK

Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.


Markov Processes for Stochastic Modeling

Markov Processes for Stochastic Modeling

Author: Oliver Ibe

Publisher: Newnes

Published: 2013-05-22

Total Pages: 515

ISBN-13: 0124078397

DOWNLOAD EBOOK

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.


Stochastic Modelling of Reaction–Diffusion Processes

Stochastic Modelling of Reaction–Diffusion Processes

Author: Radek Erban

Publisher: Cambridge University Press

Published: 2020-01-30

Total Pages: 322

ISBN-13: 1108572995

DOWNLOAD EBOOK

This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.


Stochastic Modelling of Electricity and Related Markets

Stochastic Modelling of Electricity and Related Markets

Author: Fred Espen Benth

Publisher: World Scientific

Published: 2008

Total Pages: 352

ISBN-13: 981281230X

DOWNLOAD EBOOK

The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives.This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. Ornstein?Uhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice.


Stochastic Modeling of Scientific Data

Stochastic Modeling of Scientific Data

Author: Peter Guttorp

Publisher: CRC Press

Published: 2018-03-29

Total Pages: 388

ISBN-13: 1351413651

DOWNLOAD EBOOK

Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.


Stochastic Modeling

Stochastic Modeling

Author: Hossein Bonakdari

Publisher: Elsevier

Published: 2022-04-13

Total Pages: 372

ISBN-13: 0323972756

DOWNLOAD EBOOK

Stochastic Modeling: A Thorough Guide to Evaluate, Pre-Process, Model and Compare Time Series with MATLAB Software allows for new avenues in time series analysis and predictive modeling which summarize more than ten years of experience in the application of stochastic models in environmental problems. The book introduces a variety of different topics in time series in the modeling and prediction of complex environmental systems. Most importantly, all codes are user-friendly and readers will be able to use them for their cases. Users who may not be familiar with MATLAB software can also refer to the appendix. This book also guides the reader step-by-step to learn developed codes for time series modeling, provides required toolboxes, explains concepts, and applies different tools for different types of environmental time series problems. - Provides video tutorials on the use of codes - Includes a companion site with 3,000 lines of programming, 70 principal codes and 100 pseudo codes - Highlights multiple methods to Illustrate each problem