Stochastic Local Search algorithms were shown to give state-of-the-art results for many other problems, but little is known on how to design and analyse them for Multiobjective Combinatorial Optimization Problems. This book aims to fill this gap. It defines two search models that correspond to two distinct ways of tackling MCOPs by SLS algorithms."
Stochastic local search (SLS) algorithms are established tools for the solution of computationally hard problems arising in computer science, business adm- istration, engineering, biology, and various other disciplines. To a large extent, their success is due to their conceptual simplicity, broad applicability and high performance for many important problems studied in academia and enco- tered in real-world applications. SLS methods include a wide spectrum of te- niques, ranging from constructive search procedures and iterative improvement algorithms to more complex SLS methods, such as ant colony optimization, evolutionary computation, iterated local search, memetic algorithms, simulated annealing, tabu search, and variable neighborhood search. Historically, the development of e?ective SLS algorithms has been guided to a large extent by experience and intuition. In recent years, it has become - creasingly evident that success with SLS algorithms depends not merely on the adoption and e?cient implementation of the most appropriate SLS technique for a given problem, but also on the mastery of a more complex algorithm - gineering process. Challenges in SLS algorithm development arise partly from the complexity of the problems being tackled and in part from the many - grees of freedom researchers and practitioners encounter when developing SLS algorithms. Crucial aspects in the SLS algorithm development comprise al- rithm design, empirical analysis techniques, problem-speci?c background, and background knowledge in several key disciplines and areas, including computer science, operations research, arti?cial intelligence, and statistics.
The purpose of this book is to collect contributions that deal with the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems. Such a collection intends to provide an overview of the state-of-the-art developments in this field, with the aim of motivating more researchers in operations research, engineering, and computer science, to do research in this area. As such, this book is expected to become a valuable reference for those wishing to do research on the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems.
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.
This book constitutes the refereed proceedings of the 6th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2011, held in Ouro Preto, Brazil, in April 2011. The 42 revised full papers presented were carefully reviewed and selected from 83 submissions. The papers deal with fundamental questions of EMO theory, such as the development of algorithmically efficient tools for the evaluation of solution-set quality , the theoretical questions related to solution archiving and others. They report on the continuing effort in the development of algorithms, either for dealing with particular classes of problems or for new forms of processing the problem information. Almost one third of the papers is related to EMO applications in a diversity of fields. Eleven papers are devoted to promote the interaction with the related field of Multi-Criterion Decision Making (MCDM).
Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. - Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications - Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature - Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms
This book constitutes the refereed proceedings of the 11th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2011, held in Torino, Italy, in April 2011. The 22 revised full papers presented were carefully reviewed and selected from 42 submissions. The papers present the latest research and discuss current developments and applications in metaheuristics - a paradigm to effectively solve difficult combinatorial optimization problems appearing in various industrial, economical, and scientific domains. Prominent examples of metaheuristics are evolutionary algorithms, simulated annealing, tabu search, scatter search, memetic algorithms, variable neighborhood search, iterated local search, greedy randomized adaptive search procedures, estimation of distribution algorithms, and ant colony optimization.
The International Workshop on Hybrid Metaheuristics was established with the aim of providing researchers and scholars with a forum for discussing new ideas and research on metaheuristics and their integration with techniques typical of other ?elds. The papers accepted for the sixth workshop con?rm that such a combination is indeed e?ective and that several research areas can be put together.Slowlybut surely,thisprocesshasbeen promotingproductivedialogue amongresearcherswithdi?erentexpertiseanderodingbarriersbetweenresearch areas. The papers in this volume give a representativesample of current researchin hybrid metaheuristics. It is worth emphasizing that this year, a large number of papers demonstrated how metaheuristics can be integrated with integer linear programmingandotheroperationsresearchtechniques.Constraintprogramming is also featured, which is a notable representative of arti?cial intelligence solving methods. Most of these papers are not only a proof of concept – which can be valuable by itself – but also show that the hybrid techniques presented tackle di?cult and relevant problems. In keeping with the tradition of this workshop, special care was exercised in the review process: out of 22 submissions received, 12 papers were selected on the basis of reviews by the Program Committee members and evaluations by the Program Chairs. Reviews were in great depth: reviewers sought to p- vide authors with constructive suggestions for improvement. Special thanks are extended to the Program Committee members who devoted their time and - fort. Special gratitude is due to Andrea Lodi and Vittorio Maniezzo, who both accepted our invitation to give an overview talk.
This book gives the reader an insight into the state of the art in the field of multiobjective (linear, nonlinear and combinatorial) programming, goal programming and multiobjective metaheuristics. The 26 papers describe all relevant trends in this fields of research . They cover a wide range of topics ranging from theoretical investigations to algorithms, dealing with uncertainty, and applications to real world problems such as engineering design, water distribution systems and portfolio selection. The book is based on the papers of the seventh international conference on multiple objective programming and goal programming (MOPGP06).