This volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.
Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry – random sets, point processes, random mosaics – and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes.
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
Somebody had to do it. The Chinese speak of deep water wells called "grandfather wells" because they take three generations of diggers to complete. Imagine the thought of such a well being abandoned incomplete by the third generation. What a loss! This book is like a grandfather well except that it has taken only two generations, John Hilliard's and mine, to finish. When I saw his manuscript lying in a heap, I decided that I must spend the time to put it and his notes into a publishable form. Now, it is done. This book is mostly about performing spatial measurements through the statistical sampling of images; it is a text on classical stereology as John Hilliard saw it. His vision of the subject was broad. Consequently, its title is broad too. It presents this subject and some of its modem extensions from the classical perspective of the one of the founders of the field, and my first advisor at Northwestern University, John Hilliard. There is nothing new in this book but much that may have been lost over time. It rediscovers many useful discussions about such subjects as the variances of stereo logical measurements, anisotropy etc. It recovers some of the dialogues between John Hilliard and his students on such topics as fractals and Monte Carlo simulations. It recaptures a little of John Hilliard's unique and subtle wit.
Stochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible applications. Stochastic Geometry: Likelihood and Computation provides a coordinated collection of chapters on important aspects of the rapidly developing field of stochastic geometry, including: o a "crash-course" introduction to key stochastic geometry themes o considerations of geometric sampling bias issues o tesselations o shape o random sets o image analysis o spectacular advances in likelihood-based inference now available to stochastic geometry through the techniques of Markov chain Monte Carlo
Setting out the principles of stereology from a statistical viewpoint, this book focuses on both basic theory and practical implications. The authors discuss ways to effectively communicate statistical issues to clients, draw attention to common methodological errors, and provide references to essential literature. The first full text on design-bas
The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The book deals with the following topics: point processes random sets random measures random shapes fibre and surface processes tessellations stereological methods. This book has served as the key reference in its field for over 20 years and is regarded as the best treatment of the subject of stochastic geometry, both as an subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right.
The classical subjects of geometric probability and integral geometry, and the more modern one of stochastic geometry, are developed here in a novel way to provide a framework in which they can be studied. The author focuses on factorization properties of measures and probabilities implied by the assumption of their invariance with respect to a group, in order to investigate nontrivial factors. The study of these properties is the central theme of the book. Basic facts about integral geometry and random point process theory are developed in a simple geometric way, so that the whole approach is suitable for a nonspecialist audience. Even in the later chapters, where the factorization principles are applied to geometrical processes, the only prerequisites are standard courses on probability and analysis. The main ideas presented have application to such areas as stereology and geometrical statistics and this book will be a useful reference book for university students studying probability theory and stochastic geometry, and research mathematicians interested in this area.
This volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.