Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.


Stochastic Differential Equations and Applications

Stochastic Differential Equations and Applications

Author: Avner Friedman

Publisher: Academic Press

Published: 2014-06-20

Total Pages: 248

ISBN-13: 1483217876

DOWNLOAD EBOOK

Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.


Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 666

ISBN-13: 3662126168

DOWNLOAD EBOOK

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP


Theory of Stochastic Differential Equations with Jumps and Applications

Theory of Stochastic Differential Equations with Jumps and Applications

Author: Rong SITU

Publisher: Springer Science & Business Media

Published: 2006-05-06

Total Pages: 444

ISBN-13: 0387251758

DOWNLOAD EBOOK

Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.


Stochastic Differential Equations and Diffusion Processes

Stochastic Differential Equations and Diffusion Processes

Author: N. Ikeda

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 572

ISBN-13: 1483296156

DOWNLOAD EBOOK

Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sections discussing complex (conformal) martingales and Kahler diffusions have been added.


An Introduction to Stochastic Differential Equations

An Introduction to Stochastic Differential Equations

Author: Lawrence C. Evans

Publisher: American Mathematical Soc.

Published: 2012-12-11

Total Pages: 161

ISBN-13: 1470410540

DOWNLOAD EBOOK

These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).


Statistical Methods for Stochastic Differential Equations

Statistical Methods for Stochastic Differential Equations

Author: Mathieu Kessler

Publisher: CRC Press

Published: 2012-05-17

Total Pages: 507

ISBN-13: 1439849765

DOWNLOAD EBOOK

The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to th


Diffusion Processes, Jump Processes, and Stochastic Differential Equations

Diffusion Processes, Jump Processes, and Stochastic Differential Equations

Author: Wojbor A. Woyczyński

Publisher: CRC Press

Published: 2022-03-09

Total Pages: 138

ISBN-13: 1000475352

DOWNLOAD EBOOK

Diffusion Processes, Jump Processes, and Stochastic Differential Equations provides a compact exposition of the results explaining interrelations between diffusion stochastic processes, stochastic differential equations and the fractional infinitesimal operators. The draft of this book has been extensively classroom tested by the author at Case Western Reserve University in a course that enrolled seniors and graduate students majoring in mathematics, statistics, engineering, physics, chemistry, economics and mathematical finance. The last topic proved to be particularly popular among students looking for careers on Wall Street and in research organizations devoted to financial problems. Features Quickly and concisely builds from basic probability theory to advanced topics Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations Useful as supplementary reading across a range of topics.


Modeling with Itô Stochastic Differential Equations

Modeling with Itô Stochastic Differential Equations

Author: E. Allen

Publisher: Springer Science & Business Media

Published: 2007-03-08

Total Pages: 239

ISBN-13: 1402059531

DOWNLOAD EBOOK

This book explains a procedure for constructing realistic stochastic differential equation models for randomly varying systems in biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation.