General activity review of associated branches and agencies to the Department which includes corporate securities registrations, a list of tenders received, and general financial data. Branches and agencies reviewed are responsible for motor vehicle activity, highway construction, traffic engineering, telecommunications and public utilities.
Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.
The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.
Taylor's Power Law: Order and Pattern in Nature is a broad synthesis of this ubiquitous property of natural and man-made phenomena. This stimulating and approachable work surveys the biological and non-biological empirical data, describes the statistical uses of Taylor's power law (TPL) and its relationship to statistical distributions, exposes the mathematical connections to other power laws, covers the competing explanatory models; and develops an argument for TPL's genesis. Taylor's power law relates the variability of a process or population to its average value. It was first described in relation to insect populations and then more broadly to other animal and plant populations. Subsequently it has been recognized in microbiology, genetics, economics, astronomy, physics, and computer science, and it is thought to be one of the few general laws in ecology where it is routinely used to describe the spatial and temporal distributions of populations. Biologists who know the law as Taylor's power law and physical scientists who know it as fluctuation scaling will be interested in the bigger picture on this fascinating subject. As the relationship between variance and mean is found in so wide a range of disciplines, it seems possible it is a deep property of number, not just a phenomenon in ecology as was thought originally. Although theories abound that purport to explain or predict TPL, none is entirely satisfactory either because it fails to be very predictive, or it does not account for all the available empirical data. To uncover such a property requires a synthesis across disciplines, an acute need that is approached by this exciting work. - Provides a single reference describing the properties, scope, and limitations of Taylor's power law - Reports the empirical, analytical, and theoretical work without opinion and ends with a critique of the work in order to develop a synthesis - Collects together thoughts and suggestions of the hundreds who have written and speculated about Taylor's power law in order to review examples (and counter-examples), as well as examine the various models developed to account for it
This publication includes 82 technical papers presented at Rocscience International Conference (RIC) 2021, held online on April 20 and 21, 2021. Rocscience created this event to bring geotechnical academics, researchers and practitioners together to exchange ideas as part of celebrating 25 years of the company’s existence. The papers in these proceedings were from keynotes, panel discussions and papers, selected after careful review of over 100 technical submissions delivered at RIC 2021. The technical papers were grouped into sessions based on their subject areas. The conference aimed to stimulate discussions that could help the industry work towards overcoming geotechnical engineering limitations today. It also sought to foster creative thinking that will advance the current states of the art and practice. The keynote addresses, panel discussions and technical presentations tried to examine geotechnical problems and situations from fresh perspectives. RIC 2021 hopes that the proceedings will continue to enrich our thinking and contribute to achieving a critical mass of change in our practices and approaches. We look forward to significant improvements in our industry.
Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, from minerals processing to bulk and fine chemicals, and the food and pharmaceutical industries, yet is rarely found in the curricula of engineering or chemistry departments. With contributions from leading authors in their respective fields, Characterisation of Bulk Solids provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. The reader will then be in a better position to diagnose solids handling and processing problems in industry, and to deal with experts and equipment suppliers from an informed standpoint. Written for post-graduate engineers, chemical scientists and technologists at all stages of their industrial career, the book will also serve as an ideal primer in any of the specialist areas to inform further study.
This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.
This book presents the proceedings of the 3rd International Conference on Integrated Petroleum Engineering and Geosciences 2014 (ICIPEG2014). Topics covered on the petroleum engineering side include reservoir modeling and simulation, enhanced oil recovery, unconventional oil and gas reservoirs, production and operation. Similarly geoscience presentations cover diverse areas in geology, geophysics palaeontology and geochemistry. The selected papers focus on current interests in petroleum engineering and geoscience. This book will be a bridge between engineers, geoscientists, academicians and industry.
Applications of wavelet analysis to the geophysical sciences grew from Jean Morlet's work on seismic signals in the 1980s. Used to detect signals against noise, wavelet analysis excels for transients or for spatiallylocalized phenomena. In this fourth volume in the renown WAVELET ANALYSIS AND ITS APPLICATIONS Series, Efi Foufoula-Georgiou and Praveen Kumar begin with a self-contained overview of the nature, power, and scope of wavelet transforms. The eleven originalpapers that follow in this edited treatise show how geophysical researchers are using wavelets to analyze such diverse phenomena as intermittent atmospheric turbulence, seafloor bathymetry, marine and other seismic data, and flow in aquifiers. Wavelets in Geophysics will make informative reading for geophysicists seeking an up-to-date account of how these tools are being used as well as for wavelet researchers searching for ideas for applications, or even new points of departure. Includes twelve original papers written by experts in the geophysical sciences Provides a self-contained overview of the nature, power, and scope of wavelet transforms Presents applications of wavelets to geophysical phenomena such as: The sharp events of seismic data, Long memory processes, such as fluctuation in the level of the Nile, A structure preserving decomposition of turbulence signals