Stirling Convertor Regenerators addresses the latest developments and future possibilities in the science and practical application of Stirling engine regenerators and technology. Written by experts in the vanguard of alternative energy, this invaluable resource presents integral scientific details and design concepts associated with Stirling conve
The Regenerator and the Stirling Engine examines the basic scientific and engineering principles of the Regenerator and the Stirling engine. Drawing upon his own research and collaboration with engine developers, Allan J Organ offers solutions to many of the problems which have prevented these engines operating at the levels of efficiency of which they are theoretically capable. The Regenerator and the Stirling Engine offers practising engineers and designers specific guidelines for building in optimum thermodynamic performance at the design stage. COMPLETE CONTENTS: Bridging the gap The Stirling cycle Heat transfer – and the price Similarity and scaling; Energetic similarity In support of similarity Hausen revised Connectivity and thermal shorting Real particle trajectories – natural co-ordinates The Stirling regenerator The Ritz rotary regenerator Compressibility effects Regenerator flow impedance Complex admittance – experimental corroboration Steady-flow Cf–Nre correlations inferred from linear-wave analysis Optimization Part I: without the computer Optimization Part II: cyclic steady state Elements of combustion Design study Hobbyhorse Origins Appendices
For Stirling engines to enjoy widespread application and acceptance, not only must the fundamental operation of such engines be widely understood, but the requisite analytic tools for the stimulation, design, evaluation and optimization of Stirling engine hardware must be readily available. The purpose of this design manual is to provide an introduction to Stirling cycle heat engines, to organize and identify the available Stirling engine literature, and to identify, organize, evaluate and, in so far as possible, compare non-proprietary Stirling engine design methodologies. This report was originally prepared for the National Aeronautics and Space Administration and the U. S. Department of Energy.
This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries. The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications chapters on hardware and measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.
Energy conversion technology has always been a main focus for researchers in order to meet the increasing demand as well as securing a clean, consistent and reliable energy supply. The constantly rising fuel price is another good reason to develop alternative systems such as wind turbines, hydropower, photovoltaic systems and other renewable energy solutions. This book contains a collection of selected research works in the areas of electric energy generation, renewable energy sources, hybrid system, electromechanical energy conversion, electric machines, power electronic converters and inverters, energy storage, smart grid and traditional energy conversion systems. The book intends to provide academic and industry professionals working in the field of energy conversion and related applications with an update in energy conversion technology, particularly from the applied perspective.
Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language
A radically new understanding of and practical approach to climate change by noted environmentalist Paul Hawken, creator of the New York Times bestseller Drawdown Regeneration offers a visionary new approach to climate change, one that weaves justice, climate, biodiversity, equity, and human dignity into a seamless tapestry of action, policy, and transformation that can end the climate crisis in one generation. It is the first book to describe and define the burgeoning regeneration movement spreading rapidly throughout the world. Regeneration describes how an inclusive movement can engage the majority of humanity to save the world from the threat of global warming, with climate solutions that directly serve our children, the poor, and the excluded. This means we must address current human needs, not future existential threats, real as they are, with initiatives that include but go well beyond solar, electric vehicles, and tree planting to include such solutions as the fifteen-minute city, bioregions, azolla fern, food localization, fire ecology, decommodification, forests as farms, and the number one solution for the world: electrifying everything. Paul Hawken and the nonprofit Regeneration Organization are launching a series of initiatives to accompany the book, including a streaming video series, curriculum, podcasts, teaching videos, and climate action software. Regeneration is the inspiring and necessary guide to inform the rapidly spreading climate movement.
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. - Provides a thorough introduction to ORC power systems - Contains detailed chapters on ORC plant components - Includes a section focusing on ORC design and optimization - Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes - Various chapters are authored by well-known specialists from Academia and ORC manufacturers