STEM Integration in K-12 Education

STEM Integration in K-12 Education

Author: National Research Council

Publisher: National Academies Press

Published: 2014-02-28

Total Pages: 143

ISBN-13: 0309297990

DOWNLOAD EBOOK

STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.


Integration in K-12 STEM Education

Integration in K-12 STEM Education

Author: Committee on Integrated STEM Education

Publisher: National Academies Press

Published: 2014-12-31

Total Pages: 0

ISBN-13: 9780309297967

DOWNLOAD EBOOK

During the past decade, the STEM acronym has developed wide currency in U.S. education and policy circles. Leaders in business, government, and academia assert that education in the STEM subjects (science, technology, engineering, and mathematics) is vital not only to sustaining the innovation capacity of the United States but also as a foundation for successful employment, including but not limited to work in the STEM fields. Historically, U.S. K-12 STEM education has focused on the individual subjects, particularly science and mathematics. Reform efforts, including the development of learning standards and, more recently, large-scale assessments, likewise have treated the STEM subjects mostly in isolation. Education for K-12 students in STEM has received increasing attention during the past decade with calls both for greater emphasis on these fields and for improvements in the quality of curricula and instruction. In response, numerous new instructional materials, programs, and specialized schools are emerging. While most of these initiatives address one or more of the STEM subjects separately, there are increasing demands for emphasizing connections between and among the subjects. The relatively recent introduction of engineering education into some K-12 classrooms and out-of-school settings and the 2013 publication of the Next Generation of Science Standards, which explicitly connect science concepts and practices to those of engineering, have elevated the idea of integration as a potential component of STEM education. Integration in K-12 STEM Education examines current efforts to integrate the STEM disciplines in K-12 education and to develop a research agenda that if carried out could provide the data needed to inform such efforts going forward. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, such as greater student awareness, interest, motivation, and achievement in STEM subjects; improved college-readiness skills; and boosts in the number and quality of students who may consider a career in a STEM-related field. Finally, the report determines a set of priority research questions to advance the understanding of integrated STEM education. This book develops a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. Integration in K-12 STEM Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and advocates the potential of some forms of integrated STEM education to make a positive difference in learning, interest, and other valued outcomes.


Engineering in Pre-college Settings

Engineering in Pre-college Settings

Author: Şenay Purzer

Publisher: Purdue University Press

Published: 2014

Total Pages: 469

ISBN-13: 1557536910

DOWNLOAD EBOOK

In science, technology, engineering, and mathematics (STEM) education in pre-college, engineering is not the silent "e" anymore. There is an accelerated interest in teaching engineering in all grade levels. Structured engineering programs are emerging in schools as well as in out-of-school settings. Over the last ten years, the number of states in the US including engineering in their K-12 standards has tripled, and this trend will continue to grow with the adoption of the Next Generation Science Standards. The interest in pre-college engineering education stems from three different motivations. First, from a workforce pipeline or pathway perspective, researchers and practitioners are interested in understanding precursors, influential and motivational factors, and the progression of engineering thinking. Second, from a general societal perspective, technological literacy and understanding of the role of engineering and technology is becoming increasingly important for the general populace, and it is more imperative to foster this understanding from a younger age. Third, from a STEM integration and education perspective, engineering processes are used as a context to teach science and math concepts. This book addresses each of these motivations and the diverse means used to engage with them.Designed to be a source of background and inspiration for researchers and practitioners alike, this volume includes contributions on policy, synthesis studies, and research studies to catalyze and inform current efforts to improve pre-college engineering education. The book explores teacher learning and practices, as well as how student learning occurs in both formal settings, such as classrooms, and informal settings, such as homes and museums. This volume also includes chapters on assessing design and creativity.


Improving K-12 STEM Education Outcomes through Technological Integration

Improving K-12 STEM Education Outcomes through Technological Integration

Author: Urban, Michael J.

Publisher: IGI Global

Published: 2015-11-12

Total Pages: 529

ISBN-13: 1466696176

DOWNLOAD EBOOK

The application of technology in classroom settings has equipped educators with innovative tools and techniques for effective teaching practice. Integrating digital technologies at the elementary and secondary levels helps to enrich the students’ learning experience and maximize competency in the areas of science, technology, engineering, and mathematics. Improving K-12 STEM Education Outcomes through Technological Integration focuses on current research surrounding the effectiveness, performance, and benefits of incorporating various technological tools within science, technology, engineering, and mathematics classrooms. Focusing on evidence-based approaches and current educational innovations, this book is an essential reference source for teachers, teacher educators, and professionals interested in how emerging technologies are benefiting teaching and/or learning efficacy.


STEM by Design

STEM by Design

Author: Anne Jolly

Publisher: Routledge

Published: 2016-06-10

Total Pages: 176

ISBN-13: 1317395786

DOWNLOAD EBOOK

How do you create effective STEM classrooms that energize students, help them grow into creative thinkers and collaborators, and prepare them for their futures? This practical book from expert Anne Jolly has all the answers and tools you need to get started or enhance your current program. Based on the author’s popular MiddleWeb blog of the same name, STEM by Design reveals the secrets to successful lessons in which students use science, math, and technology to solve real-world engineering design problems. You’ll learn how to: Select and adapt quality existing STEM lessons that present authentic problems, allow for creative approaches, and engage students in meaningful teamwork; Create your own student-centered STEM lessons based on the Engineering Design Process; Assess students’ understanding of basic STEM concepts, their problem-solving abilities, and their level of engagement with the material; Teach STEM in after-school programs to further build on concepts covered in class; Empower girls to aspire to careers in STEM and break down the barriers of gender bias; Tap into STEM's project-based learning style to attract and engage all students. Throughout this user-friendly book, you’ll find design tools such as checklists, activities, and assessments to aid you in developing or adapting STEM lessons. These tools, as well as additional teacher resources, are also available as free downloads from the book’s website, http://www.stem-by-design.com.


Successful K-12 STEM Education

Successful K-12 STEM Education

Author: National Research Council

Publisher: National Academies Press

Published: 2011-06-22

Total Pages: 44

ISBN-13: 0309213002

DOWNLOAD EBOOK

Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.


STEM Lesson Essentials, Grades 3-8

STEM Lesson Essentials, Grades 3-8

Author: Jo Anne Vasquez

Publisher: Heinemann Educational Books

Published: 2013

Total Pages: 0

ISBN-13: 9780325043586

DOWNLOAD EBOOK

Want to know how to implement authentic STEM teaching and learning into your classroom? STEM Lesson Essentials provides all the tools and strategies you'll need to design integrated, interdisciplinary STEM lessons and units that are relevant and exciting to your students. With clear definitions of both STEM and STEM literacy, the authors argue that STEM in itself is not a curriculum, but rather a way of organizing and delivering instruction by weaving the four disciplines together in intentional ways. Rather than adding two new subjects to the curriculum, the engineering and technology practices can instead be blended into existing math and science lessons in ways that engage students and help them master 21st century skills.


STEM Road Map

STEM Road Map

Author: Carla C. Johnson

Publisher: Routledge

Published: 2015-07-03

Total Pages: 374

ISBN-13: 1317620208

DOWNLOAD EBOOK

STEM Road Map: A Framework for Integrated STEM Education is the first resource to offer an integrated STEM curricula encompassing the entire K-12 spectrum, with complete grade-level learning based on a spiraled approach to building conceptual understanding. A team of over thirty STEM education professionals from across the U.S. collaborated on the important work of mapping out the Common Core standards in mathematics and English/language arts, the Next Generation Science Standards performance expectations, and the Framework for 21st Century Learning into a coordinated, integrated, STEM education curriculum map. The book is structured in three main parts—Conceptualizing STEM, STEM Curriculum Maps, and Building Capacity for STEM—designed to build common understandings of integrated STEM, provide rich curriculum maps for implementing integrated STEM at the classroom level, and supports to enable systemic transformation to an integrated STEM approach. The STEM Road Map places the power into educators’ hands to implement integrated STEM learning within their classrooms without the need for extensive resources, making it a reality for all students.


Theorizing STEM Education in the 21st Century

Theorizing STEM Education in the 21st Century

Author: Kehdinga George Fomunyam

Publisher: BoD – Books on Demand

Published: 2020-02-26

Total Pages: 238

ISBN-13: 1789857015

DOWNLOAD EBOOK

Theorising STEM Education in the 21st Century is a book that captures the essence of Science, Technology, Engineering and Mathematics and the intricacies of STEM education in the contemporary society. It explores STEM as an interdisciplinary field as well as the individual disciplines that make up STEM. This ensures the field of STEM as a whole is theorised. The book provides critical insight on STEM education from Cairo to Cape Town or from America to Indonesia. With a team of authors from universities across the world, the book is a vital contribution to critical scholarship on STEM education in contemporary times.


Engineering in K-12 Education

Engineering in K-12 Education

Author: National Research Council

Publisher: National Academies Press

Published: 2009-09-08

Total Pages: 595

ISBN-13: 030914471X

DOWNLOAD EBOOK

Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.