Stem Cell Nanoengineering reviews the applications of nanotechnology in the fields of stem cells, tissue engineering, and regenerative medicine. Topics addressed include various types of stem cells, underlying principles of nanobiotechnology, the making of nano-scaffolds, nano tissue engineering, applications of nanotechnology in stem cell tracking and molecular imaging, nano-devices, as well as stem cell nano-engineering from bench to bedside. Written by renowned experts in their respective fields, chapters describe and explore a wide variety of topics in stem cell nanoengineering, making the book a valuable resource for both researchers and clinicians in biomedical and bioengineering fields.
The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languages, variation in discourse practices, and, in some cases, experiences with schooling in other countries. English Learners in STEM Subjects: Transforming Classrooms, Schools, and Lives examines the research on ELs' learning, teaching, and assessment in STEM subjects and provides guidance on how to improve learning outcomes in STEM for these students. This report considers the complex social and academic use of language delineated in the new mathematics and science standards, the diversity of the population of ELs, and the integration of English as a second language instruction with core instructional programs in STEM.
This book discusses critical areas of progress in stem cell research, including the most recent research and applications of pluripotent embryonic cells, induced pluripotent cells, oligopotent tissue stem cells and cancer stem cells. The text covers basic knowledge of stem cell biology, stem cell ethics, development of techniques for applying stem cell therapy, the technology of obtaining appropriate cells for transplantation as well as the role of stem cells in cancer and how therapy may be directed to cancer stem cells. This new volume is essential reading for all scientists currently in the field or allied research areas, and those for those graduate students who envision a career in stem cells.
Stem cell research is one of the fascinating areas of contemporary biology, but, as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates discoveries. Research on stem cell treatment continues to advance knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. The most important potential application of human stem cells is the generation of cells and tissues that could be used for cell-based therapies, especially oncology. The Faculty of Medicine, Universitas Sumatera Utara, collaborated with the center of excellence and innovation (Pusat Unggulan Inovasi /PUI). The Stem Cell center of the Universitas Sumatera Utara (USU) organized an International Conference. The International Stem Cell and Oncology Conference (ISCOC) 2017 was a comprehensive academic conference in the field of stem cell and oncology research and also tropical medicine and related scientific topics. We expect Stem Cell Oncology will benefit academics and practitioners in the field of health sciences in Indonesia. This is an Open Access ebook, and can be found on www.taylorfrancis.com.
Since different types of stem cells for therapeutic applications have recently been proposed, this timely volume explores various sources of stem cells for tissue and organ regeneration and discusses their advantages and limitations. Also discussed are pros and cons for using embryonic stem cells, induced pluripotent stem cells, and adult stem cells isolated from postnatal tissues. Different types of adult stem cells for therapeutic applications are also reviewed, including hematopoietic stem cells, epidermal stem cells, endothelial progenitors, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells. This book also addresses paracrine effects of stem cells in regenerative medicine that are mediated by extracellular microvesicles and soluble secretome. Finally, potential applications of stem cells in cardiology, gastroenterology, neurology, immunotherapy, and aging are presented. This is an ideal book for students and researchers working in the stem cell research field.
The SAGE Encyclopedia of Stem Cell Research, Second Edition is filled with new procedures and exciting medical breakthroughs, including executive orders from the Obama administration reversing barriers to research imposed under the Bush administration, court rulings impacting NIH funding of research based on human embryonic stem cells, edicts by the Papacy and other religious leaders, and the first success in cloning human stem cells. Stem cell biology is clearly fueling excitement and potential in traditional areas of developmental biology and in the field of regenerative medicine, where they are believed to hold much promise in addressing any number of intractable medical conditions. This updated second edition encyclopedia will expand on information that was given in the first edition and present more than 270 new and updated articles that explore major topics in ways accessible to nonscientists, thus bringing readers up-to-date with where stem cell biology stands today, including new and evolving ethical, religious, legal, social, and political perspectives. This second edition reference work will serve as a universal resource for all public and academic libraries. It is an excellent foundation for anyone who is interested in the subject area of stem cell biology. Key Features: Reader’s Guide, Further Readings, Cross References, Chronology, Resource Guide, Index A Glossary will elucidate stem cell terminology for the nonscientist Statistics and selected reprints of major journal articles that pertain to milestones achieved in stem cell research Documents from Congressional Hearings on stem cells and cloning Reports to the President’s Council on Bioethics, and more
As a food resource in both Eastern and Western countries, the eel is an important fish. Over the years, remarkable progress has been achieved in understanding the mysterious life cycle of eels that has fascinated scientists since the age of Aristotle. The spawning area of the Japanese eel was discovered and the migratory route of its larvae was elucidated. With the development of techniques for artificial induction of gonadal maturation, it became possible to obtain hatched larvae. Larval rearing to the leptocephalus stage, one of the most difficult tasks involved in eel culture, finally was achieved. By presenting these important breakthroughs, Eel Biology will be of great help in the development of effective management strategies for maintaining stable eel populations. With contributions by leading experts, this book is a valuable source for researchers as well as industry technicians in the fields of aquatic biology, aquaculture, and fisheries.
Over the past decade, significant efforts have been made to develop stem cell-based therapies for difficult to treat diseases. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), appear to hold great promise in regards to a regenerative cell-based therapy for the treatment of these diseases. Currently, more than 200 clinical trials are underway worldwide exploring the use of MSCs for the treatment of a wide range of disorders including bone, cartilage and tendon damage, myocardial infarction, graft-versus-host disease, Crohn’s disease, diabetes, multiple sclerosis, critical limb ischemia and many others. MSCs were first identified by Friendenstein and colleagues as an adherent stromal cell population within the bone marrow with the ability to form clonogenic colonies in vitro. In regards to the basic biology associated with MSCs, there has been tremendous progress towards understanding this cell population’s phenotype and function from a range of tissue sources. Despite enormous progress and an overall increased understanding of MSCs at the molecular and cellular level, several critical questions remain to be answered in regards to the use of these cells in therapeutic applications. Clinically, both autologous and allogenic approaches for the transplantation of MSCs are being explored. Several of the processing steps needed for the clinical application of MSCs, including isolation from various tissues, scalable in vitro expansion, cell banking, dose preparation, quality control parameters, delivery methods and numerous others are being extensively studied. Despite a significant number of ongoing clinical trials, none of the current therapeutic approaches have, at this point, become a standard of care treatment. Although exceptionally promising, the clinical translation of MSC-based therapies is still a work in progress. The extensive number of ongoing clinical trials is expected to provide a clearer path forward for the realization and implementation of MSCs in regenerative medicine. Towards this end, reviews of current clinical trial results and discussions of relevant topics association with the clinical application of MSCs are compiled in this book from some of the leading researchers in this exciting and rapidly advancing field. Although not absolutely all-inclusive, we hope the chapters within this book can promote and enable a better understanding of the translation of MSCs from bench-to-bedside and inspire researchers to further explore this promising and quickly evolving field.