Non-Equilibrium Reacting Gas Flows

Non-Equilibrium Reacting Gas Flows

Author: Ekaterina Nagnibeda

Publisher: Springer Science & Business Media

Published: 2009-07-09

Total Pages: 255

ISBN-13: 3642013902

DOWNLOAD EBOOK

In the present monograph, we develop the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures and discuss its applications to strongly non-equilibrium conditions. The main attention is focused on the influence of non-equilibrium kinetics on gas dynamics and transport properties. Closed systems of fluid dynamic equations are derived from the kinetic equations in different approaches. We consider the most accurate approach taking into account the state-to-state kinetics in a flow, as well as simplified multi-temperature and one-temperature models based on quasi-stationary distributions. Within these approaches, we propose the algorithms for the calculation of the transport coefficients and rate coefficients of chemical reactions and energy exchanges in non-equilibrium flows; the developed techniques are based on the fundamental kinetic theory principles. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles. The comparison of the results obtained within the frame of different approaches is presented, the advantages of the new state-to-state kinetic model are discussed, and the limits of validity for simplified models are established. The book can be interesting for scientists and graduate students working on physical gas dynamics, aerothermodynamics, heat and mass transfer, non-equilibrium physical-chemical kinetics, and kinetic theory of gases.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1995

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics

Author: Yasar Demirel

Publisher: Newnes

Published: 2013-12-16

Total Pages: 787

ISBN-13: 0444595813

DOWNLOAD EBOOK

Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]


Nonequilibrium Gas Dynamics and Molecular Simulation

Nonequilibrium Gas Dynamics and Molecular Simulation

Author: Iain D. Boyd

Publisher: Cambridge University Press

Published: 2017-03-23

Total Pages: 383

ISBN-13: 1316871371

DOWNLOAD EBOOK

This current and comprehensive book provides an updated treatment of molecular gas dynamics topics for aerospace engineers, or anyone researching high-temperature gas flows for hypersonic vehicles and propulsion systems. It demonstrates how the areas of quantum mechanics, kinetic theory, and statistical mechanics can combine in order to facilitate the study of nonequilibrium processes of internal energy relaxation and chemistry. All of these theoretical ideas are used to explain the direct simulation Monte Carlo (DSMC) method, a numerical technique based on molecular simulation. Because this text provides comprehensive coverage of the physical models available for use in the DSMC method, in addition to the equations and algorithms required to implement the DSMC numerical method, readers will learn to solve nonequilibrium flow problems and perform computer simulations, and obtain a more complete understanding of various physical modeling options for DSMC than is available in other texts.


Mass Transfer with Chemical Reaction in Multiphase Systems

Mass Transfer with Chemical Reaction in Multiphase Systems

Author: E. Alper

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 1079

ISBN-13: 9401569002

DOWNLOAD EBOOK

The phenomenon of "mass transfer with chemical reaction" takes place whenever one phase is brought into contact with one or more other phases not in chemical equilibrium with it. This phenomenon has industrial, biological and physiological importance. In chemical process engineering, it is encountered in both separ ation processes and reaction engineering. In some cases, a chemical reaction may deliberately be employed for speeding up the rate of mass transfer and/or for increasing the capacity of the solvent; in other cases the multiphase reaction system is a part of the process with the specific aim of product formation. Finally, in some cases, for instance "distillation with chemical reaction", both objectives are involved. Although the subject is clearly a chemical engineering undertakin~, it requires often a good understanding of other subjects, such as chemistry and fluid mechanics etc., leading to publications in diversified areas. On the other har.d, the subject has always been a major field and one of the most fruitful for chemical engineers.


Reaction Rate Theory and Rare Events

Reaction Rate Theory and Rare Events

Author: Baron Peters

Publisher: Elsevier

Published: 2017-03-22

Total Pages: 636

ISBN-13: 0444594701

DOWNLOAD EBOOK

Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises


Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics

Author: Yasar Demirel

Publisher: Elsevier

Published: 2007-10-10

Total Pages: 755

ISBN-13: 008055136X

DOWNLOAD EBOOK

Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and lead to instabilities, fluctuations, and evolutionary systems. This book explores the unifying role of thermodynamics in natural phenomena. Nonequilibrium Thermodynamics, Second Edition analyzes the transport processes of energy, mass, and momentum transfer processes, as well as chemical reactions. It considers various processes occurring simultaneously, and provides students with more realistic analysis and modeling by accounting possible interactions between them. This second edition updates and expands on the first edition by focusing on the balance equations of mass, momentum, energy, and entropy together with the Gibbs equation for coupled processes of physical, chemical, and biological systems. Every chapter contains examples and practical problems to be solved. This book will be effective in senior and graduate education in chemical, mechanical, systems, biomedical, tissue, biological, and biological systems engineering, as well as physical, biophysical, biological, chemical, and biochemical sciences. - Will help readers in understanding and modelling some of the coupled and complex systems, such as coupled transport and chemical reaction cycles in biological systems - Presents a unified approach for interacting processes - combines analysis of transport and rate processes - Introduces the theory of nonequilibrium thermodynamics and its use in simultaneously occurring transport processes and chemical reactions of physical, chemical, and biological systems - A useful text for students taking advanced thermodynamics courses


Water Quality Engineering

Water Quality Engineering

Author: Mark M. Benjamin

Publisher: John Wiley & Sons

Published: 2013-06-13

Total Pages: 906

ISBN-13: 1118632273

DOWNLOAD EBOOK

Explains the fundamental theory and mathematics of water and wastewater treatment processes By carefully explaining both the underlying theory and the underlying mathematics, this text enables readers to fully grasp the fundamentals of physical and chemical treatment processes for water and wastewater. Throughout the book, the authors use detailed examples to illustrate real-world challenges and their solutions, including step-by-step mathematical calculations. Each chapter ends with a set of problems that enable readers to put their knowledge into practice by developing and analyzing complex processes for the removal of soluble and particulate materials in order to ensure the safety of our water supplies. Designed to give readers a deep understanding of how water treatment processes actually work, Water Quality Engineering explores: Application of mass balances in continuous flow systems, enabling readers to understand and predict changes in water quality Processes for removing soluble contaminants from water, including treatment of municipal and industrial wastes Processes for removing particulate materials from water Membrane processes to remove both soluble and particulate materials Following the discussion of mass balances in continuous flow systems in the first part of the book, the authors explain and analyze water treatment processes in subsequent chapters by setting forth the relevant mass balance for the process, reactor geometry, and flow pattern under consideration. With its many examples and problem sets, Water Quality Engineering is recommended as a textbook for graduate courses in physical and chemical treatment processes for water and wastewater. By drawing together the most recent research findings and industry practices, this text is also recommended for professional environmental engineers in search of a contemporary perspective on water and wastewater treatment processes.