Random Matrices and the Statistical Theory of Energy Levels

Random Matrices and the Statistical Theory of Energy Levels

Author: M. L. Mehta

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 270

ISBN-13: 1483258564

DOWNLOAD EBOOK

Random Matrices and the Statistical Theory of Energy Levels focuses on the processes, methodologies, calculations, and approaches involved in random matrices and the statistical theory of energy levels, including ensembles and density and correlation functions. The publication first elaborates on the joint probability density function for the matrix elements and eigenvalues, including the Gaussian unitary, symplectic, and orthogonal ensembles and time-reversal invariance. The text then examines the Gaussian ensembles, as well as the asymptotic formula for the level density and partition function. The manuscript elaborates on the Brownian motion model, circuit ensembles, correlation functions, thermodynamics, and spacing distribution of circular ensembles. Topics include continuum model for the spacing distribution, thermodynamic quantities, joint probability density function for the eigenvalues, stationary and nonstationary ensembles, and ensemble averages. The publication then examines the joint probability density functions for two nearby spacings and invariance hypothesis and matrix element correlations. The text is a valuable source of data for researchers interested in random matrices and the statistical theory of energy levels.


Introduction to Random Matrices

Introduction to Random Matrices

Author: Giacomo Livan

Publisher: Springer

Published: 2018-01-16

Total Pages: 122

ISBN-13: 3319708856

DOWNLOAD EBOOK

Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.


Spectral Analysis of Large Dimensional Random Matrices

Spectral Analysis of Large Dimensional Random Matrices

Author: Zhidong Bai

Publisher: Springer Science & Business Media

Published: 2009-12-10

Total Pages: 560

ISBN-13: 1441906614

DOWNLOAD EBOOK

The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.


An Introduction to Random Matrices

An Introduction to Random Matrices

Author: Greg W. Anderson

Publisher: Cambridge University Press

Published: 2010

Total Pages: 507

ISBN-13: 0521194520

DOWNLOAD EBOOK

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.


Random Matrices

Random Matrices

Author: Madan Lal Mehta

Publisher: Elsevier

Published: 2004-10-06

Total Pages: 707

ISBN-13: 008047411X

DOWNLOAD EBOOK

Random Matrices gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. - Presentation of many new results in one place for the first time - First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals - Fredholm determinants and Painlevé equations - The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities - Fredholm determinants and inverse scattering theory - Probability densities of random determinants


Random Matrix Theory and Wireless Communications

Random Matrix Theory and Wireless Communications

Author: Antonia M. Tulino

Publisher: Now Publishers Inc

Published: 2004

Total Pages: 196

ISBN-13: 9781933019000

DOWNLOAD EBOOK

Random Matrix Theory and Wireless Communications is the first tutorial on random matrices which provides an overview of the theory and brings together in one source the most significant results recently obtained.


A First Course in Random Matrix Theory

A First Course in Random Matrix Theory

Author: Marc Potters

Publisher: Cambridge University Press

Published: 2020-12-03

Total Pages: 371

ISBN-13: 1108488080

DOWNLOAD EBOOK

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.


Random Matrix Theory

Random Matrix Theory

Author: Percy Deift

Publisher: American Mathematical Soc.

Published: 2009-01-01

Total Pages: 236

ISBN-13: 0821883577

DOWNLOAD EBOOK

"This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.


Log-Gases and Random Matrices (LMS-34)

Log-Gases and Random Matrices (LMS-34)

Author: Peter J. Forrester

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 808

ISBN-13: 1400835410

DOWNLOAD EBOOK

Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.


Random Matrices and Non-Commutative Probability

Random Matrices and Non-Commutative Probability

Author: Arup Bose

Publisher: CRC Press

Published: 2021-10-26

Total Pages: 420

ISBN-13: 1000458822

DOWNLOAD EBOOK

This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful. Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability. Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants. Free cumulants are introduced through the Möbius function. Free product probability spaces are constructed using free cumulants. Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed. Convergence of the empirical spectral distribution is discussed for symmetric matrices. Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices. Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices. Exercises, at advanced undergraduate and graduate level, are provided in each chapter.