Statistical Theories of Spectra
Author: Charles E. Porter
Publisher:
Published: 1965-01-01
Total Pages: 576
ISBN-13: 9780125623568
DOWNLOAD EBOOKRead and Download eBook Full
Author: Charles E. Porter
Publisher:
Published: 1965-01-01
Total Pages: 576
ISBN-13: 9780125623568
DOWNLOAD EBOOKAuthor: Ta-Hsin Li
Publisher: CRC Press
Published: 2016-04-19
Total Pages: 648
ISBN-13: 1420010069
DOWNLOAD EBOOKTime series with mixed spectra are characterized by hidden periodic components buried in random noise. Despite strong interest in the statistical and signal processing communities, no book offers a comprehensive and up-to-date treatment of the subject. Filling this void, Time Series with Mixed Spectra focuses on the methods and theory for the stati
Author: V. K. B. Kota
Publisher: World Scientific
Published: 2010
Total Pages: 716
ISBN-13: 9814287393
DOWNLOAD EBOOKThis book a first comprehensive review on statistical spectroscopy deals with two related yet distinct topics a" averages and fluctuations. While fluctuations have been dealt with in considerable detail in Porter's book entitled Statistical Theories of Spectra: Fluctuations and subsequent reviews and books there does not exist at present a similar treatise on averages. This unique volume is designed to fill this significant gap.The book begins with an introductory review and overview of the subject of spectral distributions initiated by J Bruce French in the 60's followed by a collection of original papers which continue to give new insight on average properties of spectra. The purpose is to highlight the considerable advancements made in the application of statistical spectroscopy to nuclear structure and to encourage new directions in random matrix theory many-body chaos and statistical mechanics of finite quantum systems such as nuclei atoms molecules quantum dots etc.Along with Wong's book entitled Nuclear Statistical Spectroscopy this volume would be useful to a reader looking for a thorough introduction to the subject as well as to the specialist contemplating new applications. Finally with most of the material available in one place this book would be ideal in the design of graduate courses in statistical spectroscopy suited to specific needs.
Author: L. H. Koopmans
Publisher: Academic Press
Published: 2014-05-12
Total Pages: 383
ISBN-13: 1483218546
DOWNLOAD EBOOKThe Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.
Author: E. U. Condon
Publisher: Cambridge University Press
Published: 1935-01-02
Total Pages: 464
ISBN-13: 9780521092098
DOWNLOAD EBOOKThe standard comprehensive work on the theory of atomic spectra. "...a work of the first rank...." Nature
Author: Chia-Ch'iao Lin
Publisher: Princeton University Press
Published: 2017-03-14
Total Pages: 68
ISBN-13: 1400886899
DOWNLOAD EBOOKPart of the Princeton Aeronautical Paperback series designed to bring to students and research engineers outstanding portions of the twelve-volume High Speed Aerodynamics and Jet Propulsion series. These books have been prepared by direct reproduction of the text from the original series and no attempt has been made to provide introductory material or to eliminate cross reference to other portions of the original volumes. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Author: Y. Kaneda
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 409
ISBN-13: 4431670025
DOWNLOAD EBOOKThis volume contains the papers presented at the workshop on Statistical The ories and Computational Approaches to Turbulence: Modern Perspectives and Applications to Global-Scale Flows, held October 10-13, 2001, at Nagoya Uni versity, Nagoya, Japan. Because of recent developments in computational capabilities, the compu tational approach is showing the potential to resolve a much wider range of length and time scales in turbulent physical systems. Nevertheless, even with the largest supercomputers of the foreseeable future, development of adequate modeling techniques for at least some scales of motion will be necessary for practical computations of important problems such as weather forecasting and the prediction and control of global pollution. The more powerful the available machines become, the more demand there will be for precise prediction of the systems. This means that more precise and reliable knowledge of the underlying dynamics will become important, and that more efficient and precise numerical methods best adapted to the new generation of computers will be necessary. The understanding of the nature of unresolved scales then will playa key role in the modeling of turbulent motion. The challenge to turbulence theory here is to elucidate the physics or dynamics of those scales, in particular their sta tistical aspects, and thereby develop models on sound bases to reduce modeling ambiguity. The challenge to the computational method is to develop efficient algorithms suitable for the problems, the machines, and the developed models.
Author: P. A. Durbin
Publisher: John Wiley & Sons
Published: 2011-06-28
Total Pages: 347
ISBN-13: 1119957524
DOWNLOAD EBOOKProviding a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.
Author:
Publisher: Academic Press
Published: 2016-09-22
Total Pages: 3716
ISBN-13: 0128032251
DOWNLOAD EBOOKThis third edition of the Encyclopedia of Spectroscopy and Spectrometry, Three Volume Set provides authoritative and comprehensive coverage of all aspects of spectroscopy and closely related subjects that use the same fundamental principles, including mass spectrometry, imaging techniques and applications. It includes the history, theoretical background, details of instrumentation and technology, and current applications of the key areas of spectroscopy. The new edition will include over 80 new articles across the field. These will complement those from the previous edition, which have been brought up-to-date to reflect the latest trends in the field. Coverage in the third edition includes: Atomic spectroscopy Electronic spectroscopy Fundamentals in spectroscopy High-Energy spectroscopy Magnetic resonance Mass spectrometry Spatially-resolved spectroscopic analysis Vibrational, rotational and Raman spectroscopies The new edition is aimed at professional scientists seeking to familiarize themselves with particular topics quickly and easily. This major reference work continues to be clear and accessible and focus on the fundamental principles, techniques and applications of spectroscopy and spectrometry. Incorporates more than 150 color figures, 5,000 references, and 300 articles for a thorough examination of the field Highlights new research and promotes innovation in applied areas ranging from food science and forensics to biomedicine and health Presents a one-stop resource for quick access to answers and an in-depth examination of topics in the spectroscopy and spectrometry arenas
Author: I. I. Sobel'Man
Publisher: Elsevier
Published: 2016-04-20
Total Pages: 626
ISBN-13: 1483159728
DOWNLOAD EBOOKIntroduction to the Theory of Atomic Spectra is a systematic presentation of the theory of atomic spectra based on the modern system of the theory of angular momentum. Many questions which are of interest from the point of view of using spectroscopic methods for investigating various physical phenomena, including continuous spectrum radiation, excitation of atoms, and spectral line broadening, are discussed. This volume consists of 11 chapters organized into three sections. After a summary of elementary information on atomic spectra, including the hydrogen spectrum and the spectra of multi-electron atoms, the reader is methodically introduced to angular momentum, systematics of the levels of multi-electron atoms, and hyperfine structure of spectral lines. Relativistic corrections are also given consideration, with particular reference to the use of the Dirac equation to determine the stationary states of an electron in an arbitrary electromagnetic field. In addition, the book explores the Stark effect and the Zeeman effect, the interaction between atoms and an electromagnetic field, and broadening of spectral lines. The final chapter is devoted to the problem of atomic excitation by collisions. This book is intended for advanced-course university students, postgraduate students and scientists working on spectroscopy and spectral analysis, and also in the field of theoretical physics.