Statistical Signal Processing for Neuroscience and Neurotechnology

Statistical Signal Processing for Neuroscience and Neurotechnology

Author: Karim G. Oweiss

Publisher: Academic Press

Published: 2010-09-22

Total Pages: 441

ISBN-13: 0080962963

DOWNLOAD EBOOK

This is a uniquely comprehensive reference that summarizes the state of the art of signal processing theory and techniques for solving emerging problems in neuroscience, and which clearly presents new theory, algorithms, software and hardware tools that are specifically tailored to the nature of the neurobiological environment. It gives a broad overview of the basic principles, theories and methods in statistical signal processing for basic and applied neuroscience problems.Written by experts in the field, the book is an ideal reference for researchers working in the field of neural engineering, neural interface, computational neuroscience, neuroinformatics, neuropsychology and neural physiology. By giving a broad overview of the basic principles, theories and methods, it is also an ideal introduction to statistical signal processing in neuroscience. - A comprehensive overview of the specific problems in neuroscience that require application of existing and development of new theory, techniques, and technology by the signal processing community - Contains state-of-the-art signal processing, information theory, and machine learning algorithms and techniques for neuroscience research - Presents quantitative and information-driven science that has been, or can be, applied to basic and translational neuroscience problems


Dynamic Neuroscience

Dynamic Neuroscience

Author: Zhe Chen

Publisher: Springer

Published: 2017-12-27

Total Pages: 337

ISBN-13: 3319719769

DOWNLOAD EBOOK

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.


Bioelectronics and Medical Devices

Bioelectronics and Medical Devices

Author: Kunal Pal

Publisher: Woodhead Publishing

Published: 2019-06-15

Total Pages: 1006

ISBN-13: 0081024215

DOWNLOAD EBOOK

Bioelectronics and Medical Devices: From Materials to Devices-Fabrication, Applications and Reliability reviews the latest research on electronic devices used in the healthcare sector, from materials, to applications, including biosensors, rehabilitation devices, drug delivery devices, and devices based on wireless technology. This information is presented from the unique interdisciplinary perspective of the editors and contributors, all with materials science, biomedical engineering, physics, and chemistry backgrounds. Each applicable chapter includes a discussion of these devices, from materials and fabrication, to reliability and technology applications. Case studies, future research directions and recommendations for additional readings are also included. The book addresses hot topics, such as the latest, state-of the-art biosensing devices that have the ability for early detection of life-threatening diseases, such as tuberculosis, HIV and cancer. It covers rehabilitation devices and advancements, such as the devices that could be utilized by advanced-stage ALS patients to improve their interactions with the environment. In addition, electronic controlled delivery systems are reviewed, including those that are based on artificial intelligences. - Presents the latest topics, including MEMS-based fabrication of biomedical sensors, Internet of Things, certification of medical and drug delivery devices, and electrical safety considerations - Presents the interdisciplinary perspective of materials scientists, biomedical engineers, physicists and chemists on biomedical electronic devices - Features systematic coverage in each chapter, including recent advancements in the field, case studies, future research directions, and recommendations for additional readings


Introduction to Neural Engineering for Motor Rehabilitation

Introduction to Neural Engineering for Motor Rehabilitation

Author: Dario Farina

Publisher: John Wiley & Sons

Published: 2013-05-21

Total Pages: 661

ISBN-13: 1118628632

DOWNLOAD EBOOK

Neural engineering is a discipline that uses engineering techniques to understand, repair, replace, enhance, or treat diseases of neural systems. Currently, no book other than this one covers this broad range of topics within motor rehabilitation technology. With a focus on cutting edge technology, it describes state-of-the-art methods within this field, from brain-computer interfaces to spinal and cortical plasticity. Touching on electrode design, signal processing, the neurophysiology of movement, robotics, and much more, this innovative volume collects the latest information for a wide range of readers working in biomedical engineering.


Neural Information Processing

Neural Information Processing

Author: Bao-Liang Lu

Publisher: Springer Science & Business Media

Published: 2011-10-26

Total Pages: 788

ISBN-13: 364224954X

DOWNLOAD EBOOK

The three volume set LNCS 7062, LNCS 7063, and LNCS 7064 constitutes the proceedings of the 18th International Conference on Neural Information Processing, ICONIP 2011, held in Shanghai, China, in November 2011. The 262 regular session papers presented were carefully reviewed and selected from numerous submissions. The papers of part I are organized in topical sections on perception, emotion and development, bioinformatics, biologically inspired vision and recognition, bio-medical data analysis, brain signal processing, brain-computer interfaces, brain-like systems, brain-realistic models for learning, memory and embodied cognition, Clifford algebraic neural networks, combining multiple learners, computational advances in bioinformatics, and computational-intelligent human computer interaction. The second volume is structured in topical sections on cybersecurity and data mining workshop, data mining and knowledge doscovery, evolutionary design and optimisation, graphical models, human-originated data analysis and implementation, information retrieval, integrating multiple nature-inspired approaches, kernel methods and support vector machines, and learning and memory. The third volume contains all the contributions connected with multi-agent systems, natural language processing and intelligent Web information processing, neural encoding and decoding, neural network models, neuromorphic hardware and implementations, object recognition, visual perception modelling, and advances in computational intelligence methods based pattern recognition.


Electrophysiology Measurements for Studying Neural Interfaces

Electrophysiology Measurements for Studying Neural Interfaces

Author: Mohammad M. Aria

Publisher: Academic Press

Published: 2020-05-15

Total Pages: 180

ISBN-13: 0128170719

DOWNLOAD EBOOK

Electrophysiology Measurements for Studying Neural Interfaces helps readers to choose a proper cell line and set-up for studying different bio-electronic interfaces before delving into the electrophysiology techniques available. Therefore, this book details the materials and devices needed for different types of neural stimulation such as photoelectrical and photothermal stimulations. Also, modern techniques like optical electrophysiology and calcium imaging in this book provides readers with more available approaches to monitor neural activities in addition to whole-cell patch-clamp technology. - Details steps of an electrophysiology project from start to finish for graduate students employing the technique in their research - Includes sample electrophysiological studies with multiple cell lines (PC12, N2a, NG108, SHSY, and embryonic stem cell lines) to facilitate research - Features data analysis of electrophysiology results from various relevant experiments and cell culture tips


Neural Information Processing

Neural Information Processing

Author: Tingwen Huang

Publisher: Springer

Published: 2012-11-05

Total Pages: 730

ISBN-13: 364234478X

DOWNLOAD EBOOK

The five volume set LNCS 7663, LNCS 7664, LNCS 7665, LNCS 7666 and LNCS 7667 constitutes the proceedings of the 19th International Conference on Neural Information Processing, ICONIP 2012, held in Doha, Qatar, in November 2012. The 423 regular session papers presented were carefully reviewed and selected from numerous submissions. These papers cover all major topics of theoretical research, empirical study and applications of neural information processing research. The 5 volumes represent 5 topical sections containing articles on theoretical analysis, neural modeling, algorithms, applications, as well as simulation and synthesis.


Neuronal Dynamics

Neuronal Dynamics

Author: Wulfram Gerstner

Publisher: Cambridge University Press

Published: 2014-07-24

Total Pages: 591

ISBN-13: 1107060834

DOWNLOAD EBOOK

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.


Brain-Computer Interfacing

Brain-Computer Interfacing

Author: Rajesh P. N. Rao

Publisher: Cambridge University Press

Published: 2013-09-30

Total Pages: 337

ISBN-13: 1107433738

DOWNLOAD EBOOK

The idea of interfacing minds with machines has long captured the human imagination. Recent advances in neuroscience and engineering are making this a reality, opening the door to restoration and augmentation of human physical and mental capabilities. Medical applications such as cochlear implants for the deaf and neurally controlled prosthetic limbs for the paralyzed are becoming almost commonplace. Brain-computer interfaces (BCIs) are also increasingly being used in security, lie detection, alertness monitoring, telepresence, gaming, education, art, and human augmentation. This introduction to the field is designed as a textbook for upper-level undergraduate and first-year graduate courses in neural engineering or brain-computer interfacing for students from a wide range of disciplines. It can also be used for self-study and as a reference by neuroscientists, computer scientists, engineers, and medical practitioners. Key features include questions and exercises in each chapter and a supporting website.