Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence

Author: Luc De Raedt

Publisher: Morgan & Claypool Publishers

Published: 2016-03-24

Total Pages: 191

ISBN-13: 1627058427

DOWNLOAD EBOOK

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.


Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning

Author: Lise Getoor

Publisher: MIT Press

Published: 2007

Total Pages: 602

ISBN-13: 0262072882

DOWNLOAD EBOOK

In 'Introduction to Statistical Relational Learning', leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data.


Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence

Author: Luc De Kang

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 175

ISBN-13: 3031015746

DOWNLOAD EBOOK

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.


Logical and Relational Learning

Logical and Relational Learning

Author: Luc De Raedt

Publisher: Springer Science & Business Media

Published: 2008-09-27

Total Pages: 395

ISBN-13: 3540688560

DOWNLOAD EBOOK

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.


An Introduction to Lifted Probabilistic Inference

An Introduction to Lifted Probabilistic Inference

Author: Guy Van den Broeck

Publisher: MIT Press

Published: 2021-08-17

Total Pages: 455

ISBN-13: 0262542595

DOWNLOAD EBOOK

Recent advances in the area of lifted inference, which exploits the structure inherent in relational probabilistic models. Statistical relational AI (StaRAI) studies the integration of reasoning under uncertainty with reasoning about individuals and relations. The representations used are often called relational probabilistic models. Lifted inference is about how to exploit the structure inherent in relational probabilistic models, either in the way they are expressed or by extracting structure from observations. This book covers recent significant advances in the area of lifted inference, providing a unifying introduction to this very active field. After providing necessary background on probabilistic graphical models, relational probabilistic models, and learning inside these models, the book turns to lifted inference, first covering exact inference and then approximate inference. In addition, the book considers the theory of liftability and acting in relational domains, which allows the connection of learning and reasoning in relational domains.


Markov Logic

Markov Logic

Author: Pedro Dechter

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 145

ISBN-13: 3031015495

DOWNLOAD EBOOK

Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion


Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming

Author: Luc De Raedt

Publisher: Springer

Published: 2008-02-26

Total Pages: 348

ISBN-13: 354078652X

DOWNLOAD EBOOK

This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.


Relational Data Mining

Relational Data Mining

Author: Saso Dzeroski

Publisher: Springer Science & Business Media

Published: 2001-08

Total Pages: 422

ISBN-13: 9783540422891

DOWNLOAD EBOOK

As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.


Artificial Intelligence

Artificial Intelligence

Author: David L. Poole

Publisher: Cambridge University Press

Published: 2017-09-25

Total Pages: 821

ISBN-13: 110719539X

DOWNLOAD EBOOK

Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.


Probabilistic Graphical Models

Probabilistic Graphical Models

Author: Daphne Koller

Publisher: MIT Press

Published: 2009-07-31

Total Pages: 1270

ISBN-13: 0262258358

DOWNLOAD EBOOK

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.