Statistical Physics, Optimization, Inference, and Message-Passing Algorithms

Statistical Physics, Optimization, Inference, and Message-Passing Algorithms

Author: Florent Krzakala

Publisher: Oxford University Press

Published: 2016

Total Pages: 319

ISBN-13: 0198743734

DOWNLOAD EBOOK

In the last decade, there have been an increasing convergence of interest and methods between theoretical physics and fields as diverse as probability, machine learning, optimization and compressed sensing. In particular, many theoretical and applied works in statistical physics and computer science have relied on the use of message passing algorithms and their connection to statistical physics of spin glasses. The aim of this book, especially adapted to PhD students, post-docs, and young researchers, is to present the background necessary for entering this fast developing field.


Mathematical Statistical Physics

Mathematical Statistical Physics

Author:

Publisher: Elsevier

Published: 2006-06-27

Total Pages: 849

ISBN-13: 0080479235

DOWNLOAD EBOOK

The proceedings of the 2005 les Houches summer school on Mathematical Statistical Physics give and broad and clear overview on this fast developing area of interest to both physicists and mathematicians. Introduction to a field of math with many interdisciplinary connections in physics, biology, and computer science Roadmap to the next decade of mathematical statistical mechanics Volume for reference years to come


Advances in Multiuser Detection

Advances in Multiuser Detection

Author: Michael L. Honig

Publisher: John Wiley & Sons

Published: 2009-08-19

Total Pages: 512

ISBN-13: 9780470473801

DOWNLOAD EBOOK

A Timely Exploration of Multiuser Detection in Wireless Networks During the past decade, the design and development of current and emerging wireless systems have motivated many important advances in multiuser detection. This book fills an important need by providing a comprehensive overview of crucial recent developments that have occurred in this active research area. Each chapter is contributed by noted experts and is meant to serve as a self-contained treatment of the topic. Coverage includes: Linear and decision feedback methods Iterative multiuser detection and decoding Multiuser detection in the presence of channel impairments Performance analysis with random signatures and channels Joint detection methods for MIMO channels Interference avoidance methods at the transmitter Transmitter precoding methods for the MIMO downlink This book is an ideal entry point for exploring ongoing research in multiuser detection and for learning about the field's existing unsolved problems and issues. It is a valuable resource for researchers, engineers, and graduate students who are involved in the area of digital communications.


Modern Coding Theory

Modern Coding Theory

Author: Tom Richardson

Publisher: Cambridge University Press

Published: 2008-03-17

Total Pages: 589

ISBN-13: 1139469649

DOWNLOAD EBOOK

Having trouble deciding which coding scheme to employ, how to design a new scheme, or how to improve an existing system? This summary of the state-of-the-art in iterative coding makes this decision more straightforward. With emphasis on the underlying theory, techniques to analyse and design practical iterative coding systems are presented. Using Gallager's original ensemble of LDPC codes, the basic concepts are extended for several general codes, including the practically important class of turbo codes. The simplicity of the binary erasure channel is exploited to develop analytical techniques and intuition, which are then applied to general channel models. A chapter on factor graphs helps to unify the important topics of information theory, coding and communication theory. Covering the most recent advances, this text is ideal for graduate students in electrical engineering and computer science, and practitioners. Additional resources, including instructor's solutions and figures, available online: www.cambridge.org/9780521852296.


Information, Physics, and Computation

Information, Physics, and Computation

Author: Marc Mézard

Publisher: Oxford University Press

Published: 2009-01-22

Total Pages: 584

ISBN-13: 019857083X

DOWNLOAD EBOOK

A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.


Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday

Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday

Author: Helge Holden

Publisher: American Mathematical Soc.

Published: 2013-07-08

Total Pages: 409

ISBN-13: 0821875744

DOWNLOAD EBOOK

This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu


Methods of Contemporary Mathematical Statistical Physics

Methods of Contemporary Mathematical Statistical Physics

Author: Marek Biskup

Publisher: Springer Science & Business Media

Published: 2009-03-25

Total Pages: 356

ISBN-13: 3540927956

DOWNLOAD EBOOK

This volume presents a collection of courses introducing the reader to the recent progress with attention being paid to laying solid grounds and developing various basic tools. An introductory chapter on lattice spin models is useful as a background for other lectures of the collection. The topics include new results on phase transitions for gradient lattice models (with introduction to the techniques of the reflection positivity), stochastic geometry reformulation of classical and quantum Ising models, the localization/delocalization transition for directed polymers. A general rigorous framework for theory of metastability is presented and particular applications in the context of Glauber and Kawasaki dynamics of lattice models are discussed. A pedagogical account of several recently discussed topics in nonequilibrium statistical mechanics with an emphasis on general principles is followed by a discussion of kinetically constrained spin models that are reflecting important peculiar features of glassy dynamics.


Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms

Author: David J. C. MacKay

Publisher: Cambridge University Press

Published: 2003-09-25

Total Pages: 694

ISBN-13: 9780521642989

DOWNLOAD EBOOK

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.


Computational Complexity and Statistical Physics

Computational Complexity and Statistical Physics

Author: Allon Percus

Publisher: Oxford University Press, USA

Published: 2006

Total Pages: 394

ISBN-13: 9780195177374

DOWNLOAD EBOOK

Computer science and physics have been closely linked since the birth of modern computing. In recent years, an interdisciplinary area has blossomed at the junction of these fields, connecting insights from statistical physics with basic computational challenges. Researchers have successfully applied techniques from the study of phase transitions to analyze NP-complete problems such as satisfiability and graph coloring. This is leading to a new understanding of the structure of these problems, and of how algorithms perform on them. Computational Complexity and Statistical Physics will serve as a standard reference and pedagogical aid to statistical physics methods in computer science, with a particular focus on phase transitions in combinatorial problems. Addressed to a broad range of readers, the book includes substantial background material along with current research by leading computer scientists, mathematicians, and physicists. It will prepare students and researchers from all of these fields to contribute to this exciting area.