Statistical Multiple Integration

Statistical Multiple Integration

Author: Nancy Flournoy

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 290

ISBN-13: 0821851225

DOWNLOAD EBOOK

High dimensional integration arises naturally in two major sub-fields of statistics: multivariate and Bayesian statistics. Indeed, the most common measures of central tendency, variation, and loss are defined by integrals over the sample space, the parameter space, or both. Recent advances in computational power have stimulated significant new advances in both Bayesian and classical multivariate statistics. In many statistical problems, however, multiple integration can be the major obstacle to solutions. This volume contains the proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Statistical Multiple Integration, held in June 1989 at Humboldt State University in Arcata, California. The conference represents an attempt to bring together mathematicians, statisticians, and computational scientists to focus on the many important problems in statistical multiple integration. The papers document the state of the art in this area with respect to problems in statistics, potential advances blocked by problems with multiple integration, and current work directed at expanding the capability to integrate over high dimensional surfaces.


Approximating Integrals Via Monte Carlo and Deterministic Methods

Approximating Integrals Via Monte Carlo and Deterministic Methods

Author: Michael John Evans

Publisher: Oxford University Press on Demand

Published: 2000

Total Pages: 288

ISBN-13: 9780198502784

DOWNLOAD EBOOK

This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher- dimensional integrals thelower-dimensional case is also covered. Included in the book are asymptotic techniques, multiple quadrature and quasi-random techniques as well as a complete development of Monte Carlo algorithms. For the Monte Carlo section importance sampling methods, variance reduction techniques and the primaryMarkov Chain Monte Carlo algorithms are covered. This book brings these various techniques together for the first time, and hence provides an accessible textbook and reference for researchers in a wide variety of disciplines.


Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R

Author: Christian Robert

Publisher: Springer Science & Business Media

Published: 2010

Total Pages: 297

ISBN-13: 1441915753

DOWNLOAD EBOOK

This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.


Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice

Author: Arnaud Doucet

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 590

ISBN-13: 1475734379

DOWNLOAD EBOOK

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.


Approximating Integrals via Monte Carlo and Deterministic Methods

Approximating Integrals via Monte Carlo and Deterministic Methods

Author: Michael Evans

Publisher: OUP Oxford

Published: 2000-03-23

Total Pages: 302

ISBN-13: 019158987X

DOWNLOAD EBOOK

This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher- dimensional integrals the lower-dimensional case is also covered. Included in the book are asymptotic techniques, multiple quadrature and quasi-random techniques as well as a complete development of Monte Carlo algorithms. For the Monte Carlo section importance sampling methods, variance reduction techniques and the primary Markov Chain Monte Carlo algorithms are covered. This book brings these various techniques together for the first time, and hence provides an accessible textbook and reference for researchers in a wide variety of disciplines.


Monte-Carlo Simulation-Based Statistical Modeling

Monte-Carlo Simulation-Based Statistical Modeling

Author: Ding-Geng (Din) Chen

Publisher: Springer

Published: 2017-02-01

Total Pages: 440

ISBN-13: 9811033072

DOWNLOAD EBOOK

This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.


Uncertainty in Engineering

Uncertainty in Engineering

Author: Louis J. M. Aslett

Publisher: Springer Nature

Published: 2022

Total Pages: 148

ISBN-13: 3030836401

DOWNLOAD EBOOK

This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.


Monte Carlo and Quasi-Monte Carlo Methods

Monte Carlo and Quasi-Monte Carlo Methods

Author: Ronald Cools

Publisher: Springer

Published: 2016-06-13

Total Pages: 624

ISBN-13: 3319335073

DOWNLOAD EBOOK

This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.


Monte Carlo Statistical Methods

Monte Carlo Statistical Methods

Author: Christian Robert

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 670

ISBN-13: 1475741456

DOWNLOAD EBOOK

We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.


Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Author: Marco Taboga

Publisher: Createspace Independent Publishing Platform

Published: 2017-12-08

Total Pages: 670

ISBN-13: 9781981369195

DOWNLOAD EBOOK

The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.