Extensively revised and updated edition of the bestselling textbook, provides an overview of recent global airline industry evolution and future challenges Examines the perspectives of the many stakeholders in the global airline industry, including airlines, airports, air traffic services, governments, labor unions, in addition to passengers Describes how these different players have contributed to the evolution of competition in the global airline industry, and the implications for its future evolution Includes many facets of the airline industry not covered elsewhere in any single book, for example, safety and security, labor relations and environmental impacts of aviation Highlights recent developments such as changing airline business models, growth of emerging airlines, plans for modernizing air traffic management, and opportunities offered by new information technologies for ticket distribution Provides detailed data on airline performance and economics updated through 2013
The book provides a comprehensive overview of current practices and future directions in airline revenue management. It explains state-of-the-art revenue management approaches and outlines how these will be augmented and enhanced through modern data science and machine learning methods in the future. Several practical examples and applications will make the reader familiar with the relevance of the corresponding ideas and concepts for an airline commercial organization. The book is ideal for both students in the field of airline and tourism management as well as for practitioners and industry experts seeking to refresh their knowledge about current and future revenue management approaches, as well as to get an introductory understanding of data science and machine learning methods. Each chapter closes with a checkpoint, allowing the reader to deepen the understanding of the contents covered.This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
Revenue management (RM) has emerged as one of the most important new business practices in recent times. This book is the first comprehensive reference book to be published in the field of RM. It unifies the field, drawing from industry sources as well as relevant research from disparate disciplines, as well as documenting industry practices and implementation details. Successful hardcover version published in April 2004.
This is the first comprehensive introduction to the concepts, theories, and applications of pricing and revenue optimization. From the initial success of "yield management" in the commercial airline industry down to more recent successes of markdown management and dynamic pricing, the application of mathematical analysis to optimize pricing has become increasingly important across many different industries. But, since pricing and revenue optimization has involved the use of sophisticated mathematical techniques, the topic has remained largely inaccessible to students and the typical manager. With methods proven in the MBA courses taught by the author at Columbia and Stanford Business Schools, this book presents the basic concepts of pricing and revenue optimization in a form accessible to MBA students, MS students, and advanced undergraduates. In addition, managers will find the practical approach to the issue of pricing and revenue optimization invaluable. Solutions to the end-of-chapter exercises are available to instructors who are using this book in their courses. For access to the solutions manual, please contact [email protected].
Extensively revised and updated edition of the bestselling textbook, provides an overview of recent global airline industry evolution and future challenges Examines the perspectives of the many stakeholders in the global airline industry, including airlines, airports, air traffic services, governments, labor unions, in addition to passengers Describes how these different players have contributed to the evolution of competition in the global airline industry, and the implications for its future evolution Includes many facets of the airline industry not covered elsewhere in any single book, for example, safety and security, labor relations and environmental impacts of aviation Highlights recent developments such as changing airline business models, growth of emerging airlines, plans for modernizing air traffic management, and opportunities offered by new information technologies for ticket distribution Provides detailed data on airline performance and economics updated through 2013
In recent years, airline practitioners and academics have started to explore new ways to model airline passenger demand using discrete choice methods. This book provides an introduction to discrete choice models and uses extensive examples to illustrate how these models have been used in the airline industry. These examples span network planning, revenue management, and pricing applications. Numerous examples of fundamental logit modeling concepts are covered in the text, including probability calculations, value of time calculations, elasticity calculations, nested and non-nested likelihood ratio tests, etc. The core chapters of the book are written at a level appropriate for airline practitioners and graduate students with operations research or travel demand modeling backgrounds. Given the majority of discrete choice modeling advancements in transportation evolved from urban travel demand studies, the introduction first orients readers from different backgrounds by highlighting major distinctions between aviation and urban travel demand studies. This is followed by an in-depth treatment of two of the most common discrete choice models, namely the multinomial and nested logit models. More advanced discrete choice models are covered, including mixed logit models and generalized extreme value models that belong to the generalized nested logit class and/or the network generalized extreme value class. An emphasis is placed on highlighting open research questions associated with these models that will be of particular interest to operations research students. Practical modeling issues related to data and estimation software are also addressed, and an extensive modeling exercise focused on the interpretation and application of statistical tests used to guide the selection of a preferred model specification is included; the modeling exercise uses itinerary choice data from a major airline. The text concludes with a discussion of on-going customer modeling research in aviation. Discrete Choice Modelling and Air Travel Demand is enriched by a comprehensive set of technical appendices that will be of particular interest to advanced students of discrete choice modeling theory. The appendices also include detailed proofs of the multinomial and nested logit models and derivations of measures used to represent competition among alternatives, namely correlation, direct-elasticities, and cross-elasticities.
Revenue management is the process of allocating the right inventory to the right kind of customer at the right price to maximise revenue. It applies particularly to the service sector. Covering numerous industries, these case studies demonstrate a variety of scenarios, problems and solutions.
This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.
Accurate forecasts are crucial to a revenue management system. Poor estimates of demand lead to inadequate inventory controls and sub-optimal revenue performance. Forecasting for airline revenue management systems is inherently difficult. Competitive actions, seasonal factors, the economic environment, and constant fare changes are a few of the hurdles that must be overcome. In addition, the fact that most of the historical demand data is censored further complicates the problem. This dissertation examines the challenge of forecasting for an airline revenue management system in the presence of censored demand data. This dissertation analyzed the improvement in forecast accuracy that results from estimating demand by unconstraining the censored data. Little research has been done on unconstraining censored data for revenue management systems. Airlines tend to either ignore the problem or use very simple ad hoc methods to deal with it. A literature review explores the current methods for unconstraining censored data. Also, practices borrowed from areas outside of revenue management are adapted to this application. For example, the Expectation-Maximization (EM) and other imputation methods were investigated. These methods are evaluated and tested using simulation and actual airline data. An extension to the EM algorithm that results in a 41% improvement in forecast accuracy is presented.