STATISTICAL METHODS FOR ENGINEERS, 3e, International Edition offers a balanced, streamlined one-semester introduction to Engineering Statistics that emphasizes the statistical tools most needed by practicing engineers.
This work details the fundamentals of applied statistics and experimental design, presenting a unified approach to data handling that emphasizes the analysis of variance, regression analysis and the use of Statistical Analysis System computer programs. This edition: discusses modern nonparametric methods; contains information on statistical process control and reliability; supplies fault and event trees; furnishes numerous additional end-of-chapter problems and worked examples; and more.
Reflecting more than 30 years of teaching experience in the field, this guide provides engineers with an introduction to statistics and its applicability to engineering. Examples cover a wide range of engineering applications, including both chemical engineering and semiconductors. Among the topics featured are: quality assurance and statistics, continuous variables, hypothesis testing, comparative experiments, acceptance sampling, the analysis of variance, Taguchi and Orthogonal arrays. Tables, references and an index round out this work.
The present book is meant for the first-year students of various universities. Engineering educationists feel that first-year students of all disciplines must have an elementary and general idea about various branches of electronics. Spread in sixteen chapters, the book broadly discusses.
Revised and expanded edition of a text that is intended as a basic introductory course in applied statistical methods for students of engineering and the physical sciences at the undergraduate level. Theoretical developments and mathematical treatment of the principles involved are included as needed for understanding of the validity of the techniques presented. The major changes in this edition are a new chapter on statistical process control and reliability, several added nonparametric techniques, and 30 added problems. Annotation copyright by Book News, Inc., Portland, OR
This book describes how statistical methods can be effectively applied in the work of an engineer in terms that can be readily understood. Application of these methods enables the effort involved in experiments to be reduced, the results of these experiments to be fully evaluated, and statistically sound statements to be made as a result. Products can be developed more efficiently and manufactured more cost-effectively, not to mention with greater process reliability. The overarching aim is to save time, money, and materials. From the examples provided, the nature of the practical application can be clearly grasped in each case. This book is a translation of the original German 1st edition Statistik für Ingenieure by Hartmut Schiefer and Felix Schiefer, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). The present version has been revised technically and linguistically by the authors in collaboration with a professional translator. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
This practical text is an essential source of information for those wanting to know how to deal with the variability that exists in every engineering situation. Using typical engineering data, it presents the basic statistical methods that are relevant, in simple numerical terms. In addition, statistical terminology is translated into basic English. In the past, a lack of communication between engineers and statisticians, coupled with poor practical skills in quality management and statistical engineering, was damaging to products and to the economy. The disastrous consequence of setting tight tolerances without regard to the statistical aspect of process data is demonstrated. This book offers a solution, bridging the gap between statistical science and engineering technology to ensure that the engineers of today are better equipped to serve the manufacturing industry. Inside, you will find coverage on: the nature of variability, describing the use of formulae to pin down sources of variation; engineering design, research and development, demonstrating the methods that help prevent costly mistakes in the early stages of a new product; production, discussing the use of control charts, and; management and training, including directing and controlling the quality function. The Engineering section of the index identifies the role of engineering technology in the service of industrial quality management. The Statistics section identifies points in the text where statistical terminology is used in an explanatory context. Engineers working on the design and manufacturing of new products find this book invaluable as it develops a statistical method by which they can anticipate and resolve quality problems before launching into production. This book appeals to students in all areas of engineering and also managers concerned with the quality of manufactured products. Academic engineers can use this text to teach their students basic practical skills in quality management and statistical engineering, without getting involved in the complex mathematical theory of probability on which statistical science is dependent.
In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.