Statistics for High-Dimensional Data

Statistics for High-Dimensional Data

Author: Peter Bühlmann

Publisher: Springer Science & Business Media

Published: 2011-06-08

Total Pages: 568

ISBN-13: 364220192X

DOWNLOAD EBOOK

Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.


High-Dimensional Statistics

High-Dimensional Statistics

Author: Martin J. Wainwright

Publisher: Cambridge University Press

Published: 2019-02-21

Total Pages: 571

ISBN-13: 1108498027

DOWNLOAD EBOOK

A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.


Statistical Analysis for High-Dimensional Data

Statistical Analysis for High-Dimensional Data

Author: Arnoldo Frigessi

Publisher: Springer

Published: 2016-02-16

Total Pages: 313

ISBN-13: 3319270990

DOWNLOAD EBOOK

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.


Fundamentals of High-Dimensional Statistics

Fundamentals of High-Dimensional Statistics

Author: Johannes Lederer

Publisher: Springer Nature

Published: 2021-11-16

Total Pages: 355

ISBN-13: 3030737926

DOWNLOAD EBOOK

This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.


Statistical Inference from High Dimensional Data

Statistical Inference from High Dimensional Data

Author: Carlos Fernandez-Lozano

Publisher: MDPI

Published: 2021-04-28

Total Pages: 314

ISBN-13: 3036509445

DOWNLOAD EBOOK

• Real-world problems can be high-dimensional, complex, and noisy • More data does not imply more information • Different approaches deal with the so-called curse of dimensionality to reduce irrelevant information • A process with multidimensional information is not necessarily easy to interpret nor process • In some real-world applications, the number of elements of a class is clearly lower than the other. The models tend to assume that the importance of the analysis belongs to the majority class and this is not usually the truth • The analysis of complex diseases such as cancer are focused on more-than-one dimensional omic data • The increasing amount of data thanks to the reduction of cost of the high-throughput experiments opens up a new era for integrative data-driven approaches • Entropy-based approaches are of interest to reduce the dimensionality of high-dimensional data


Introduction to High-Dimensional Statistics

Introduction to High-Dimensional Statistics

Author: Christophe Giraud

Publisher: CRC Press

Published: 2021-08-25

Total Pages: 410

ISBN-13: 1000408353

DOWNLOAD EBOOK

Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.


Partially Linear Models

Partially Linear Models

Author: Wolfgang Härdle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 210

ISBN-13: 3642577008

DOWNLOAD EBOOK

In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.


High-dimensional Data Analysis

High-dimensional Data Analysis

Author: Tony Cai;Xiaotong Shen

Publisher:

Published:

Total Pages: 318

ISBN-13: 9787894236326

DOWNLOAD EBOOK

Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.


Mathematical Foundations of Infinite-Dimensional Statistical Models

Mathematical Foundations of Infinite-Dimensional Statistical Models

Author: Evarist Giné

Publisher: Cambridge University Press

Published: 2021-03-25

Total Pages: 706

ISBN-13: 1009022784

DOWNLOAD EBOOK

In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.