Stationary Oscillations of Elastic Plates

Stationary Oscillations of Elastic Plates

Author: Gavin R. Thomson

Publisher: Springer Science & Business Media

Published: 2011-06-28

Total Pages: 241

ISBN-13: 0817682414

DOWNLOAD EBOOK

Many problems in mathematical physics rely heavily on the use of elliptical partial differential equations, and boundary integral methods play a significant role in solving these equations. Stationary Oscillations of Elastic Plates studies the latter in the context of stationary vibrations of thin elastic plates. The techniques presented here reduce the complexity of classical elasticity to a system of two independent variables, modeling problems of flexural-vibrational elastic body deformation with the aid of eigenfrequencies and simplifying them to manageable, uniquely solvable integral equations. The book is intended for an audience with a knowledge of advanced calculus and some familiarity with functional analysis. It is a valuable resource for professionals in pure and applied mathematics, and for theoretical physicists and mechanical engineers whose work involves elastic plates. Graduate students in these fields can also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations.


An Introduction to the Mathematical Theory of Vibrations of Elastic Plates

An Introduction to the Mathematical Theory of Vibrations of Elastic Plates

Author: Raymond David Mindlin

Publisher: World Scientific

Published: 2006

Total Pages: 211

ISBN-13: 9812703810

DOWNLOAD EBOOK

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices.


Theory of Elastic Oscillations

Theory of Elastic Oscillations

Author: Vladimir Fridman

Publisher: Springer

Published: 2017-07-20

Total Pages: 261

ISBN-13: 9811047863

DOWNLOAD EBOOK

This book presents in detail an alternative approach to solving problems involving both linear and nonlinear oscillations of elastic distributed parameter systems. It includes the so-called variational, projection and iterative gradient methods, which, when applied to nonlinear problems, use the procedure of linearization of the original non-linear equations. These methods are not universal and require a different solution for each problem or class of problems.However, in many cases the combination of the methods shown in this book leads to more efficient algorithms for solving important applied problems.To record these algorithms in a unified form, the first part of the book and its appendix devote considerable attention to compiling the general operator equations, which include (as particular cases) equations for vibrations in rods, plates, shells and three-dimensional bodies. They are mainly considered to be periodic or nearly periodic oscillations, which correspond to stat ionary or nearly stationary regimes of machinery operation. In turn, the second part of the book presents a number of solutions for selected applications.


Stability and Oscillation of Elastic Systems

Stability and Oscillation of Elastic Systems

Author: I︠A︡kov Gilelevich Panovko

Publisher:

Published: 1973

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK

Problems such as jumps in elastic systems, problems of aeroelasticity, problems of frictional self-oscillations, and self-synchronization are discussed. The stability of equilibrium shapes of elastic systems is examined. Problems of oscillations of linear systems are discussed, including systems with a fractional number of degrees of freedom as well as free oscillations of a cantilever in the field of centrifugal forces.


The Generalized Fourier Series Method

The Generalized Fourier Series Method

Author: Christian Constanda

Publisher: Springer Nature

Published: 2020-11-21

Total Pages: 254

ISBN-13: 3030558495

DOWNLOAD EBOOK

This book explains in detail the generalized Fourier series technique for the approximate solution of a mathematical model governed by a linear elliptic partial differential equation or system with constant coefficients. The power, sophistication, and adaptability of the method are illustrated in application to the theory of plates with transverse shear deformation, chosen because of its complexity and special features. In a clear and accessible style, the authors show how the building blocks of the method are developed, and comment on the advantages of this procedure over other numerical approaches. An extensive discussion of the computational algorithms is presented, which encompasses their structure, operation, and accuracy in relation to several appropriately selected examples of classical boundary value problems in both finite and infinite domains. The systematic description of the technique, complemented by explanations of the use of the underlying software, will help the readers create their own codes to find approximate solutions to other similar models. The work is aimed at a diverse readership, including advanced undergraduates, graduate students, general scientific researchers, and engineers. The book strikes a good balance between the theoretical results and the use of appropriate numerical applications. The first chapter gives a detailed presentation of the differential equations of the mathematical model, and of the associated boundary value problems with Dirichlet, Neumann, and Robin conditions. The second chapter presents the fundamentals of generalized Fourier series, and some appropriate techniques for orthonormalizing a complete set of functions in a Hilbert space. Each of the remaining six chapters deals with one of the combinations of domain-type (interior or exterior) and nature of the prescribed conditions on the boundary. The appendices are designed to give insight into some of the computational issues that arise from the use of the numerical methods described in the book. Readers may also want to reference the authors’ other books Mathematical Methods for Elastic Plates, ISBN: 978-1-4471-6433-3 and Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation, ISBN: 978-3-319-26307-6.


Integral Methods in Science and Engineering

Integral Methods in Science and Engineering

Author: Barbara S Bertram

Publisher: CRC Press

Published: 2019-05-20

Total Pages: 380

ISBN-13: 9781420036039

DOWNLOAD EBOOK

Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.


Introduction To The Mathematical Theory Of Vibrations Of Elastic Plates, An - By R D Mindlin

Introduction To The Mathematical Theory Of Vibrations Of Elastic Plates, An - By R D Mindlin

Author: Jiashi Yang

Publisher: World Scientific

Published: 2006-12-29

Total Pages: 211

ISBN-13: 9814476544

DOWNLOAD EBOOK

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices.


Integral Methods in Science and Engineering

Integral Methods in Science and Engineering

Author: Christian Constanda

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 410

ISBN-13: 1461478286

DOWNLOAD EBOOK

​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​


Mathematical Modelling

Mathematical Modelling

Author: Simon Serovajsky

Publisher: CRC Press

Published: 2021-11-24

Total Pages: 466

ISBN-13: 1000503976

DOWNLOAD EBOOK

Mathematical Modelling sets out the general principles of mathematical modelling as a means comprehending the world. Within the book, the problems of physics, engineering, chemistry, biology, medicine, economics, ecology, sociology, psychology, political science, etc. are all considered through this uniform lens. The author describes different classes of models, including lumped and distributed parameter systems, deterministic and stochastic models, continuous and discrete models, static and dynamical systems, and more. From a mathematical point of view, the considered models can be understood as equations and systems of equations of different nature and variational principles. In addition to this, mathematical features of mathematical models, applied control and optimization problems based on mathematical models, and identification of mathematical models are also presented. Features Each chapter includes four levels: a lecture (main chapter material), an appendix (additional information), notes (explanations, technical calculations, literature review) and tasks for independent work; this is suitable for undergraduates and graduate students and does not require the reader to take any prerequisite course, but may be useful for researchers as well Described mathematical models are grouped both by areas of application and by the types of obtained mathematical problems, which contributes to both the breadth of coverage of the material and the depth of its understanding Can be used as the main textbook on a mathematical modelling course, and is also recommended for special courses on mathematical models for physics, chemistry, biology, economics, etc.