Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension

Author: Giorgio Fabbri

Publisher: Springer

Published: 2017-06-22

Total Pages: 928

ISBN-13: 3319530674

DOWNLOAD EBOOK

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.


Second Order Partial Differential Equations in Hilbert Spaces

Second Order Partial Differential Equations in Hilbert Spaces

Author: Giuseppe Da Prato

Publisher: Cambridge University Press

Published: 2002-07-25

Total Pages: 397

ISBN-13: 1139433431

DOWNLOAD EBOOK

State of the art treatment of a subject which has applications in mathematical physics, biology and finance. Includes discussion of applications to control theory. There are numerous notes and references that point to further reading. Coverage of some essential background material helps to make the book self contained.


Seminar on Stochastic Analysis, Random Fields and Applications VI

Seminar on Stochastic Analysis, Random Fields and Applications VI

Author: Robert Dalang

Publisher: Springer Science & Business Media

Published: 2011-03-16

Total Pages: 487

ISBN-13: 3034800215

DOWNLOAD EBOOK

This volume contains refereed research or review papers presented at the 6th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, in May 2008. The seminar focused mainly on stochastic partial differential equations, especially large deviations and control problems, on infinite dimensional analysis, particle systems and financial engineering, especially energy markets and climate models. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance.


Second Order PDE's in Finite and Infinite Dimension

Second Order PDE's in Finite and Infinite Dimension

Author: Sandra Cerrai

Publisher: Springer

Published: 2003-07-01

Total Pages: 330

ISBN-13: 3540451471

DOWNLOAD EBOOK

The main objective of this monograph is the study of a class of stochastic differential systems having unbounded coefficients, both in finite and in infinite dimension. We focus our attention on the regularity properties of the solutions and hence on the smoothing effect of the corresponding transition semigroups in the space of bounded and uniformly continuous functions. As an application of these results, we study the associated Kolmogorov equations, the large-time behaviour of the solutions and some stochastic optimal control problems together with the corresponding Hamilton- Jacobi-Bellman equations. In the literature there exists a large number of works (mostly in finite dimen sion) dealing with these arguments in the case of bounded Lipschitz-continuous coefficients and some of them concern the case of coefficients having linear growth. Few papers concern the case of non-Lipschitz coefficients, but they are mainly re lated to the study of the existence and the uniqueness of solutions for the stochastic system. Actually, the study of any further properties of those systems, such as their regularizing properties or their ergodicity, seems not to be developed widely enough. With these notes we try to cover this gap.


Hamilton-Jacobi Equations in Hilbert Spaces

Hamilton-Jacobi Equations in Hilbert Spaces

Author: Viorel Barbu

Publisher: Pitman Advanced Publishing Program

Published: 1983

Total Pages: 188

ISBN-13:

DOWNLOAD EBOOK

This presents a self-contained treatment of Hamilton-Jacobi equations in Hilbert spaces. Most of the results presented have been obtained by the authors. The treatment is novel in that it is concerned with infinite dimensional Hamilton-Jacobi equations; it therefore does not overlap with Research Note #69. Indeed, these books are in a sense complementary.


Stochastic Partial Differential Equations and Applications

Stochastic Partial Differential Equations and Applications

Author: Giuseppe Da Prato

Publisher: CRC Press

Published: 2002-04-05

Total Pages: 480

ISBN-13: 9780203910177

DOWNLOAD EBOOK

Based on the proceedings of the International Conference on Stochastic Partial Differential Equations and Applications-V held in Trento, Italy, this illuminating reference presents applications in filtering theory, stochastic quantization, quantum probability, and mathematical finance and identifies paths for future research in the field. Stochastic Partial Differential Equations and Applications analyzes recent developments in the study of quantum random fields, control theory, white noise, and fluid dynamics. It presents precise conditions for nontrivial and well-defined scattering, new Gaussian noise terms, models depicting the asymptotic behavior of evolution equations, and solutions to filtering dilemmas in signal processing. With contributions from more than 40 leading experts in the field, Stochastic Partial Differential Equations and Applications is an excellent resource for pure and applied mathematicians; numerical analysts; mathematical physicists; geometers; economists; probabilists; computer scientists; control, electrical, and electronics engineers; and upper-level undergraduate and graduate students in these disciplines.


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 1988

Total Pages: 620

ISBN-13: 9781556080050

DOWNLOAD EBOOK

V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.