Retaining Structures

Retaining Structures

Author: C. R. I. Clayton

Publisher: Thomas Telford

Published: 1993

Total Pages: 854

ISBN-13: 9780727719324

DOWNLOAD EBOOK

For practising civil and structural engineers in the field of general earth-retaining structure theory, this work presents the results of many case studies of actual retaining wall analysis, design, and construction. It also includes fundamental papers dealing with the effects of groundwater on passive earth pressure, and other related topics.


Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments

Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments

Author: Donald G. Anderson

Publisher: Transportation Research Board

Published: 2008

Total Pages: 148

ISBN-13: 0309117658

DOWNLOAD EBOOK

This report explores analytical and design methods for the seismic design of retaining walls, buried structures, slopes, and embankments. The Final Report is organized into two volumes. NCHRP Report 611 is Volume 1 of this study. Volume 2, which is only available online, presents the proposed specifications, commentaries, and example problems for the retaining walls, slopes and embankments, and buried structures.


Geosynthetic Reinforced Soil (GRS) Walls

Geosynthetic Reinforced Soil (GRS) Walls

Author: Jonathan T. H. Wu

Publisher: John Wiley & Sons

Published: 2019-07-10

Total Pages: 414

ISBN-13: 1119375843

DOWNLOAD EBOOK

The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.


Limit Analysis in Soil Mechanics

Limit Analysis in Soil Mechanics

Author: W.F. Chen

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 492

ISBN-13: 0444598359

DOWNLOAD EBOOK

During the last ten years, our understanding of the perfect plasticity and the associated flow rule assumption on which limit analysis is based has increased considerably. Many extensions and advances have been made in applications of limit analysis to the area of soil dynamics, in particular, to earthquake-induced slope failure and landslide problems and to earthquake-induced lateral earth pressures on rigid retaining structures. The purpose of the book therefore is in part to discuss the validity of the upper bound work (or energy) method of limit analysis in a form that can be appreciated by a practicing soil engineer, and in part to provide a compact and up-to-date summary of recent advances in the applications of limit analysis to earthquake-induced stability problems in soil mechanics.


Geohazards

Geohazards

Author: Madhavi Latha Gali

Publisher: Springer Nature

Published: 2020-08-13

Total Pages: 763

ISBN-13: 9811562334

DOWNLOAD EBOOK

This volume comprises select papers presented during the Indian Geotechnical Conference 2018. This volume discusses concepts of soil dynamics and studies related to earthquake geotechnical engineering, slope stability, and landslides. The papers presented in this volume analyze failures connected to geotechnical and geological origins to improve professional practice, codes of analysis and design. This volume will prove useful to researchers and practitioners alike.


Soil Dynamics and Earthquake Geotechnical Engineering

Soil Dynamics and Earthquake Geotechnical Engineering

Author: Boominathan Adimoolam

Publisher: Springer

Published: 2018-06-09

Total Pages: 268

ISBN-13: 9811305625

DOWNLOAD EBOOK

This book gathers selected proceedings of the annual conference of the Indian Geotechnical Society, and covers various aspects of soil dynamics and earthquake geotechnical engineering. The book includes a wide range of studies on seismic response of dams, foundation-soil systems, natural and man-made slopes, reinforced-earth walls, base isolation systems and so on, especially focusing on the soil dynamics and case studies from the Indian subcontinent. The book also includes chapters addressing related issues such as landslide risk assessments, liquefaction mitigation, dynamic analysis of mechanized tunneling, and advanced seismic soil-structure-interaction analysis. Given its breadth of coverage, the book offers a useful guide for researchers and practicing civil engineers alike.


Earthquake Geotechnical Engineering Design

Earthquake Geotechnical Engineering Design

Author: Michele Maugeri

Publisher: Springer Science & Business Media

Published: 2014-02-03

Total Pages: 391

ISBN-13: 3319031821

DOWNLOAD EBOOK

Pseudo-static analysis is still the most-used method to assess the stability of geotechnical systems that are exposed to earthquake forces. However, this method does not provide any information about the deformations and permanent displacements induced by seismic activity. Moreover, it is questionable to use this approach when geotechnical systems are affected by frequent and rare seismic events. Incidentally, the peak ground acceleration has increased from 0.2-0.3 g in the seventies to the current value of 0.6-0.8 g. Therefore, a shift from the pseudo-static approach to performance-based analysis is needed. Over the past five years considerable progress has been made in Earthquake Geotechnical Engineering Design (EGED). The most recent advances are presented in this book in 6 parts. The evaluation of the site amplification is covered in Part I of the book. In Part II the evaluation of the soil foundation stability against natural slope failure and liquefaction is treated. In the following 3 Parts of the book the EGED for different geotechnical systems is presented as follows: the design of levees and dams including natural slopes in Part III; the design of foundations and soil structure interaction analysis in Part IV; underground structures in Part V. Finally in Part VI, new topics like the design of reinforced earth retaining walls and landfills are covered.


Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Author: Francesco Silvestri

Publisher: CRC Press

Published: 2019-07-19

Total Pages: 7743

ISBN-13: 0429632010

DOWNLOAD EBOOK

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.