Use of Weigh-in-motion Systems for Data Collection and Enforcement

Use of Weigh-in-motion Systems for Data Collection and Enforcement

Author: Wiley D. Cunagin

Publisher:

Published: 1986

Total Pages: 48

ISBN-13:

DOWNLOAD EBOOK

"This synthesis will be of interest to planners, pavement designers, administrators, and others interested in knowing the actual weights of vehicles using the highways. Information is presented on current uses of weigh-in-motion systems that can obtain the data needed to properly plan and design highways."--Avant-propos.


Successful Practices in Weigh-in-motion Data Quality with WIM Guidebook

Successful Practices in Weigh-in-motion Data Quality with WIM Guidebook

Author: Olga I. Selezneva

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Arizona Department of Transportation (ADOT) plans to install new weigh‐in‐motion (WIM) stations with either piezo-polymer or piezo-quartz sensors. Recognizing some limitations of WIM sensor technologies, ADOT sponsored this study to ensure the accuracy of the future WIM data collection. The project tasks included (1) reviewing other highway agencies’ practices related to WIM data quality assurance through literature review and a survey; (2) developing a guidebook of clear recommendations for managing WIM installation, calibration, maintenance, and data quality assurance; and (3) developing a research report with recommendations on how to achieve successful implementation of a WIM program. Through reviewing available literature and surveying selected highway agencies, the project team determined that the piezo-quartz sensors perform much better than the piezo-polymer sensors due to their consistent reliability, reduced calibration requirements, and relative temperature insensitivity. With proper installation, piezo-quartz WIM sensors should provide accurate axle and truck weight measurements in Arizona. Findings also indicated that piezo-polymer sensors should perform well in Arizona for vehicle classification, traffic volume, and speed studies, but not for weight data collection. This is due to the temperature sensitivity of piezopolymer sensors and to the limitations of auto-calibration and temperature compensation technologies in environments where pavements undergo rapid day-to-night temperature changes and are subjected to high seasonal temperatures. Piezo-polymer sensor use with an auto-calibration feature for weight measurements should be evaluated on a case-by-case basis. Using findings from the literature review and the successful WIM practices survey, the research team developed a guidebook with recommendations and procedures for WIM site selection and qualification, installation, calibration, maintenance, data quality assurance, and personnel needed to support ADOT’s WIM program. These recommendations are specific to WIM systems that use piezo-quartz sensors and piezo-polymer sensors. The guidebook is included as Chapter 4 of this final report.


Traffic Incident Management Handbook

Traffic Incident Management Handbook

Author: D. Federal Highway Administration (Fhwa)

Publisher:

Published: 2015-02-16

Total Pages: 176

ISBN-13: 9781298044419

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.