State Estimation and Fault Diagnosis under Imperfect Measurements

State Estimation and Fault Diagnosis under Imperfect Measurements

Author: Yang Liu

Publisher: CRC Press

Published: 2022-08-31

Total Pages: 223

ISBN-13: 1000641066

DOWNLOAD EBOOK

The objective of this book is to present the up-to-date research developments and novel methodologies on state estimation and fault diagnosis (FD) techniques for a class of complex systems subject to closed-loop control, nonlinearities, and stochastic phenomena. It covers state estimation design methodologies and FD unit design methodologies including framework of optimal filter and FD unit design, robust filter and FD unit design, stability, and performance analysis for the considered systems subject to various kinds of complex factors. Features: Reviews latest research results on the state estimation and fault diagnosis issues. Presents comprehensive framework constituted for systems under imperfect measurements. Includes quantitative performance analyses to solve problems in practical situations. Provides simulation examples extracted from practical engineering scenarios. Discusses proper and novel techniques such as the Carleman approximation and completing the square method is employed to solve the mathematical problems. This book aims at Graduate students, Professionals and Researchers in Control Science and Application, Stochastic Process, Fault Diagnosis, and Instrumentation and Measurement.


Filter-Based Fault Diagnosis and Remaining Useful Life Prediction

Filter-Based Fault Diagnosis and Remaining Useful Life Prediction

Author: Yong Zhang

Publisher: CRC Press

Published: 2023-02-10

Total Pages: 290

ISBN-13: 1000835944

DOWNLOAD EBOOK

This book unifies existing and emerging concepts concerning state estimation, fault detection, fault isolation and fault estimation on industrial systems with an emphasis on a variety of network-induced phenomena, fault diagnosis and remaining useful life for industrial equipment. It covers state estimation/monitor, fault diagnosis and remaining useful life prediction by drawing on the conventional theories of systems science, signal processing and machine learning. Features: Unifies existing and emerging concepts concerning robust filtering and fault diagnosis with an emphasis on a variety of network-induced complexities. Explains theories, techniques, and applications of state estimation as well as fault diagnosis from an engineering-oriented perspective. Provides a series of latest results in robust/stochastic filtering, multidate sample, and time-varying system. Captures diagnosis (fault detection, fault isolation and fault estimation) for time-varying multi-rate systems. Includes simulation examples in each chapter to reflect the engineering practice. This book aims at graduate students, professionals and researchers in control science and application, system analysis, artificial intelligence, and fault diagnosis.


Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control

Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control

Author: Ch. Venkateswarlu

Publisher: Elsevier

Published: 2022-01-31

Total Pages: 400

ISBN-13: 0323900682

DOWNLOAD EBOOK

Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control presents various mechanistic model based state estimators and data-driven model based state estimators with a special emphasis on their development and applications to process monitoring, fault diagnosis and control. The design and analysis of different state estimators are highlighted with a number of applications and case studies concerning to various real chemical and biochemical processes. The book starts with the introduction of basic concepts, extending to classical methods and successively leading to advances in this field. Design and implementation of various classical and advanced state estimation methods to solve a wide variety of problems makes this book immensely useful for the audience working in different disciplines in academics, research and industry in areas concerning to process monitoring, fault diagnosis, control and related disciplines. - Describes various classical and advanced versions of mechanistic model based state estimation algorithms - Describes various data-driven model based state estimation techniques - Highlights a number of real applications of mechanistic model based and data-driven model based state estimators/soft sensors - Beneficial to those associated with process monitoring, fault diagnosis, online optimization, control and related areas


Fault Detection and State Estimation in Automatic Control

Fault Detection and State Estimation in Automatic Control

Author: Sheng Du

Publisher: Mdpi AG

Published: 2023-12-12

Total Pages: 0

ISBN-13: 9783036597560

DOWNLOAD EBOOK

Fault detection and state estimation are essential tasks for ensuring the reliability, safety and performance of automatic control systems. They play a critical role in detecting and isolating faults quickly and accurately, enabling timely corrective action and preventing system failures. The field of fault detection and state estimation has seen significant advances in recent years, driven by the integration of advanced methodologies with cutting-edge technologies, in particular artificial intelligence and deep learning. These techniques have demonstrated remarkable capabilities in fault diagnosis, state estimation and fault-tolerant control, especially in complex multi-sensor systems. This Special Issue highlights and discusses the design and application of fault detection algorithms, the design and application of state estimation methods, the design and application of machine learning algorithms, the analysis of automatic control system characteristics, and the design and application of intelligent control systems. Nevertheless, many challenges remain and require attention, including scalability, computational efficiency, online implementation, fault isolation, fault recovery and fault-tolerant control. Additional research efforts are therefore essential to advance both the theory and practice of this critical task.


Model-Based Fault Diagnosis

Model-Based Fault Diagnosis

Author: Zhenhua Wang

Publisher: Springer Nature

Published: 2022-10-28

Total Pages: 207

ISBN-13: 9811967067

DOWNLOAD EBOOK

This book investigates in detail model-based fault diagnosis methods, including observer-based residual generation, residual evaluation based on threshold computation, observer-based fault isolation strategies, observer-based fault estimation, Kalman filter-based fault diagnosis methods, and parity space approach. Studies on model-based fault diagnosis have attracted engineers and scientists from various disciplines, such as electrical, aerospace, mechanical, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of state-space approach. The methods introduced in the book are systemic and easy to follow. The book is intended for undergraduate and graduate students who are interested in fault diagnosis and state estimation, researchers investigating fault diagnosis and fault-tolerant control, and control system design engineers working on safety-critical systems.


Fault Diagnosis and Detection

Fault Diagnosis and Detection

Author: Mustafa Demetgul

Publisher: BoD – Books on Demand

Published: 2017-05-31

Total Pages: 338

ISBN-13: 9535132032

DOWNLOAD EBOOK

Mass production companies have become obliged to reduce their production costs and sell more products with lower profit margins in order to survive in competitive market conditions. The complexity and automation level of machinery are continuously growing. This development calls for some of the most critical issues that are reliability and dependability of automatic systems. In the future, machines will be monitored remotely, and computer-aided techniques will be employed to detect faults in the future, and also there will be unmanned factories where machines and systems communicate to each other, detect their own faults, and can remotely intercept their faults. The pioneer studies of such systems are fault diagnosis studies. Thus, we hope that this book will contribute to the literature in this regard.


Observer-Based Fault Estimation Techniques

Observer-Based Fault Estimation Techniques

Author: Ke Zhang

Publisher: Springer

Published: 2017-10-11

Total Pages: 194

ISBN-13: 3319674927

DOWNLOAD EBOOK

This book investigates observer-fault estimation techniques in detail, while also highlighting recent research and findings regarding fault estimation. Many practical control systems are subject to possible malfunctions, which may cause significant performance loss or even system instability. To improve the reliability, performance and safety of dynamical systems, fault diagnosis techniques are now receiving considerable attention, both in research and applications, and have been the subject of intensive investigations. Fault detection – the essential first step in fault diagnosis – is a binary decision-making process used to determine whether or not a fault has occurred. In turn, fault isolation is used to identify the location of the faulty component, while fault estimation is used to identify the size of the fault online. Compared with the problems involved in fault detection and isolation, fault estimation is considerably more challenging.


Advances in State Estimation, Diagnosis and Control of Complex Systems

Advances in State Estimation, Diagnosis and Control of Complex Systems

Author: Ye Wang

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030524418

DOWNLOAD EBOOK

This book presents theoretical and practical findings on the state estimation, diagnosis and control of complex systems, especially in the mathematical form of descriptor systems. The research is fully motivated by real-world applications (i.e., Barcelona's water distribution network), which require control systems capable of taking into account their specific features and the limits of operations in the presence of uncertainties stemming from modeling errors and component malfunctions. Accordingly, the book first introduces a complete set-based framework for explicitly describing the effects of uncertainties in the descriptor systems discussed. In turn, this set-based framework is used for state estimation and diagnosis. The book also presents a number of application results on economic model predictive control from actual water distribution networks and smart grids. Moreover, the book introduces a fault-tolerant control strategy based on virtual actuators and sensors for such systems in the descriptor form. .


Issues of Fault Diagnosis for Dynamic Systems

Issues of Fault Diagnosis for Dynamic Systems

Author: Ron J. Patton

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 612

ISBN-13: 1447136446

DOWNLOAD EBOOK

Since the time our first book Fault Diagnosis in Dynamic Systems: The ory and Applications was published in 1989 by Prentice Hall, there has been a surge in interest in research and applications into reliable methods for diag nosing faults in complex systems. The first book sold more than 1,200 copies and has become the main text in fault diagnosis for dynamic systems. This book will follow on this excellent record by focusing on some of the advances in this subject, by introducing new concepts in research and new application topics. The work cannot provide an exhaustive discussion of all the recent research in fault diagnosis for dynamic systems, but nevertheless serves to sample some of the major issues. It has been valuable once again to have the co-operation of experts throughout the world working in industry, gov emment establishments and academic institutions in writing the individual chapters. Sometimes dynamical systems have associated numerical models available in state space or in frequency domain format. When model infor mation is available, the quantitative model-based approach to fault diagnosis can be taken, using the mathematical model to generate analytically redun dant alternatives to the measured signals. When this approach is used, it becomes important to try to understand the limitations of the mathematical models i. e. , the extent to which model parameter variations occur and the effect of changing the systems point of operation.