Stage-Structured Populations

Stage-Structured Populations

Author: Bryan Manly

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 198

ISBN-13: 9400908431

DOWNLOAD EBOOK

This book provides a review of methods for obtaining and analysing data from stage-structured biological populations. The topics covered are sam pling designs (Chapter 2), the estimation of parameters by maximum likelihood (Chapter 3), the analysis of sample counts of the numbers cif individuals in different stages at different times (Chapters 4 and 5), the analysis of data using Leslie matrix types of model (Chapter 6) and key factor analysis (Chapter 7). There is also some discussion of the approaches to modelling and estimation that have been used in five studies of particular populations (Chapter 8). There is a large literature on the modelling of biological populations, and a multitude of different approaches have been used in this area. The various approaches can be classified in different ways (Southwood, 1978, ch. 12), but for the purposes of this book it is convenient to think of the three categories mathematical, statistical and predictive modelling. Mathematical modelling is concerned largely with developing models that capture the most important qualitative features of population dynamics. In this case, the models that are developed do not have to be compared with data from natural populations. As representations of idealized systems, they can be quite informative in showing the effects of changing parameters, indicating what factors are most important in promoting stability, and so on.


Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Author: Shripad Tuljapurkar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 644

ISBN-13: 1461559731

DOWNLOAD EBOOK

In the summer of 1993, twenty-six graduate and postdoctoral stu dents and fourteen lecturers converged on Cornell University for a summer school devoted to structured-population models. This school was one of a series to address concepts cutting across the traditional boundaries separating terrestrial, marine, and freshwa ter ecology. Earlier schools resulted in the books Patch Dynamics (S. A. Levin, T. M. Powell & J. H. Steele, eds., Springer-Verlag, Berlin, 1993) and Ecological Time Series (T. M. Powell & J. H. Steele, eds., Chapman and Hall, New York, 1995); a book on food webs is in preparation. Models of population structure (differences among individuals due to age, size, developmental stage, spatial location, or genotype) have an important place in studies of all three kinds of ecosystem. In choosing the participants and lecturers for the school, we se lected for diversity-biologists who knew some mathematics and mathematicians who knew some biology, field biologists sobered by encounters with messy data and theoreticians intoxicated by the elegance of the underlying mathematics, people concerned with long-term evolutionary problems and people concerned with the acute crises of conservation biology. For four weeks, these perspec tives swirled in discussions that started in the lecture hall and carried on into the sweltering Ithaca night. Diversity mayor may not increase stability, but it surely makes things interesting.


Stage-Structured Populations

Stage-Structured Populations

Author: Bryan F.J. Manly

Publisher: Springer

Published: 2014-03-14

Total Pages: 187

ISBN-13: 9789400908444

DOWNLOAD EBOOK

This book provides a review of methods for obtaining and analysing data from stage-structured biological populations. The topics covered are sam pling designs (Chapter 2), the estimation of parameters by maximum likelihood (Chapter 3), the analysis of sample counts of the numbers cif individuals in different stages at different times (Chapters 4 and 5), the analysis of data using Leslie matrix types of model (Chapter 6) and key factor analysis (Chapter 7). There is also some discussion of the approaches to modelling and estimation that have been used in five studies of particular populations (Chapter 8). There is a large literature on the modelling of biological populations, and a multitude of different approaches have been used in this area. The various approaches can be classified in different ways (Southwood, 1978, ch. 12), but for the purposes of this book it is convenient to think of the three categories mathematical, statistical and predictive modelling. Mathematical modelling is concerned largely with developing models that capture the most important qualitative features of population dynamics. In this case, the models that are developed do not have to be compared with data from natural populations. As representations of idealized systems, they can be quite informative in showing the effects of changing parameters, indicating what factors are most important in promoting stability, and so on.


Size-Structured Populations

Size-Structured Populations

Author: Bo Ebenman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 288

ISBN-13: 3642740014

DOWNLOAD EBOOK

At last both ecology and evolution are covered in this study on the dynamics of size-structured populations. How does natural selection shape growth patterns and life cycles of individuals, and hence the size-structure of populations? This book will stimulate biologists to look into some important and interesting biological problems from a new angle of approach, concerning: - life history evolution, - intraspecific competition and niche theory, - structure and dynamics of ecological communities.


Integrated Population Models

Integrated Population Models

Author: Michael Schaub

Publisher: Academic Press

Published: 2021-11-12

Total Pages: 640

ISBN-13: 0128209151

DOWNLOAD EBOOK

Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. Offers practical and accessible ecological applications of IPMs (integrated population models) Provides full documentation of analyzed code in the Bayesian framework Written and structured for an easy approach to the subject, especially for non-statisticians


Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Author: Hal Caswell

Publisher: Springer

Published: 2019-04-02

Total Pages: 308

ISBN-13: 3030105342

DOWNLOAD EBOOK

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.


Estimation of Mortality Rates in Stage-Structured Population

Estimation of Mortality Rates in Stage-Structured Population

Author: Simon N. Wood

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 113

ISBN-13: 3642499791

DOWNLOAD EBOOK

The stated aims of the Lecture Notes in Biomathematics allow for work that is "unfinished or tentative". This volume is offered in that spirit. The problem addressed is one of the classics of statistical ecology, the estimation of mortality rates from stage-frequency data, but in tackling it we found ourselves making use of ideas and techniques very different from those we expected to use, and in which we had no previous experience. Specifically we drifted towards consideration of some rather specific curve and surface fitting and smoothing techniques. We think we have made some progress (otherwise why publish?), but are acutely aware of the conceptual and statistical clumsiness of parts of the work. Readers with sufficient expertise to be offended should regard the monograph as a challenge to do better. The central theme in this book is a somewhat complex algorithm for mortality estimation (detailed at the end of Chapter 4). Because of its complexity, the job of implementing the method is intimidating. Any reader interested in using the methods may obtain copies of our code as follows: Intelligible Structured Code 1. Hutchinson and deHoog's algorithm for fitting smoothing splines by cross validation 2. Cubic covariant area-approximating splines 3. Cubic interpolating splines 4. Cubic area matching splines 5. Hyman's algorithm for monotonic interpolation based on cubic splines. Prototype User-Hostile Code 6. Positive constrained interpolation 7. Positive constrained area matching 8. The "full method" from chapter 4 9. The "simpler" method from chapter 4.