Stage-structured Demography in Stochastic Environments

Stage-structured Demography in Stochastic Environments

Author: Raziel Joseph Davison

Publisher: Stanford University

Published: 2011

Total Pages: 137

ISBN-13:

DOWNLOAD EBOOK

Populations living in natural environments experience fluctuations in environmental conditions that drive variability in demographic rates. This dissertation develops new and existing mathematical methods for studying environmental stochasticity and uses these tools to investigate the role of environmental stochasticity in driving observed population dynamics and plant life history evolution. In the first two chapters I develop new approaches to a classic method in population biology, the life table response experiment (LTRE). Whereas existing methods used time-averaged demographic rates and deterministic sensitivities to decompose observed differences in population growth rates, this new method allows estimation of the contributions to those differences made by variances in demographic rates as well as by mean rate values. I use this stochastic LTRE to show how differential variability in the vital rates of Anthyllis vulneraria (kidney vetch) contribute to differences in the population growth rates of nine populations growing in southwest Belgium; we also show how the effects of demographic rate variability depend on soil depth, where the greater moisture retention of deeper soils buffers populations against the otherwise negative effects of demographic variability. The second chapter provides a different approach to LTRE that uses an iterated two-factor decomposition of the small noise approximation of the stochastic population growth rate to quantify contributions to that growth rate made by: (i) mean vital rates, (ii) temporal variability in vital rates, (iii) elasticities of the population growth rate to individual vital rates, and (iv) correlations between vital rates across the study period. Contributions of elasticities tell us about differences in local selection pressures acting on distinct populations and contributions of correlations tell us about differences in the phenotypic tradeoffs associated with vital rates. I use this new method to show how these differences drive dynamics in two species: Anthyllis vulneraria (the same populations studied in the first chapter) and Cypripedium calceolus (lady's slipper orchid). In Anthyllis vulneraria, variability in large adult fertility and seedling survival made the largest contributions; there were also effects of differences in elasticities of large adult fertility and survival, as well as differences in the correlations between rapid growth and survival in seedlings (a survival cost of rapid early development), between large adult fertility and survival (a survival cost of reproduction) and between large adult fertility and seedling survival. In Cypripedium calceolus, population growth rates were driven most by differences in the elasticities to the probabilities of adult stasis vs. entering dormancy, as well as by differences in the variability and tradeoffs associated with adult dormancy; correlation played a role through differences in the survival payoff of dormancy vs. the complimentary fertility cost of dormancy in terms of lost opportunity for reproduction. The third and final chapter investigates the role of fire disturbance in driving the life histories and population-level dynamics of five woody plant species growing in the Brazilian cerrado, a savannah-forest mosaic in which woody vegetation cover is primarily mediated by fire disturbance. This study presents a set of diagnostics that use demographic responses to recurring disturbance to categorize species along a continuum of adaptation: on one end we find 'resistant' species that must weather disturbance in order to attain large sizes that are buffered against fire-induced mortality; on the other end we find 'resilient' species that are relatively indifferent to disturbance and harness transient opportunities afforded by early post-fire successional habitats in order to take advantage of increased nutrient availability and reduced competition. Each of these chapters uses stochastic demographic analysis to extend theory describing the dynamics of populations in variable environments; together, these studies present a variegated perspective on the role of environmental stochasticity that provides new methods and novel perspectives that should be useful in the study of population biology and life history evolution.


Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Author: Shripad Tuljapurkar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 644

ISBN-13: 1461559731

DOWNLOAD EBOOK

In the summer of 1993, twenty-six graduate and postdoctoral stu dents and fourteen lecturers converged on Cornell University for a summer school devoted to structured-population models. This school was one of a series to address concepts cutting across the traditional boundaries separating terrestrial, marine, and freshwa ter ecology. Earlier schools resulted in the books Patch Dynamics (S. A. Levin, T. M. Powell & J. H. Steele, eds., Springer-Verlag, Berlin, 1993) and Ecological Time Series (T. M. Powell & J. H. Steele, eds., Chapman and Hall, New York, 1995); a book on food webs is in preparation. Models of population structure (differences among individuals due to age, size, developmental stage, spatial location, or genotype) have an important place in studies of all three kinds of ecosystem. In choosing the participants and lecturers for the school, we se lected for diversity-biologists who knew some mathematics and mathematicians who knew some biology, field biologists sobered by encounters with messy data and theoreticians intoxicated by the elegance of the underlying mathematics, people concerned with long-term evolutionary problems and people concerned with the acute crises of conservation biology. For four weeks, these perspec tives swirled in discussions that started in the lecture hall and carried on into the sweltering Ithaca night. Diversity mayor may not increase stability, but it surely makes things interesting.


Stochastic Population Dynamics in Ecology and Conservation

Stochastic Population Dynamics in Ecology and Conservation

Author: Russell Lande

Publisher: OUP Oxford

Published: 2003

Total Pages: 698

ISBN-13: 9780198525257

DOWNLOAD EBOOK

1. Demographic and environmental stochasticity -- 2. Extinction dynamics -- 3. Age structure -- 4. Spatial structure -- 5. Population viability analysis -- 6. Sustainable harvesting -- 7. Species diversity -- 8. Community dynamics.


Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Author: Hal Caswell

Publisher: Springer

Published: 2019-04-02

Total Pages: 308

ISBN-13: 3030105342

DOWNLOAD EBOOK

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.


Conservation Biology

Conservation Biology

Author: Peggy L. Fiedler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 523

ISBN-13: 1468464264

DOWNLOAD EBOOK

• • • John Harper • • • Nature conservation has changed from an idealistic philosophy to a serious technology. Ecology, the science that underpins the technol ogy of conservation, is still too immature to provide all the wisdom that it must. It is arguable that the desire to conserve nature will in itself force the discipline of ecology to identify fundamental prob lems in its scientific goals and methods. In return, ecologists may be able to offer some insights that make conservation more practicable (Harper 1987). The idea that nature (species or communities) is worth preserv ing rests on several fundamental arguments, particularly the argu ment of nostalgia and the argument of human benefit and need. Nostalgia, of course, is a powerful emotion. With some notable ex ceptions, there is usually a feeling of dismay at a change in the sta tus quo, whether it be the loss of a place in the country for walking or rambling, the loss of a painting or architectural monument, or that one will never again have the chance to see a particular species of bird or plant.


Population Dynamics in Variable Environments

Population Dynamics in Variable Environments

Author: Shripad Tuljapurkar

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 148

ISBN-13: 3642516521

DOWNLOAD EBOOK

Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to readers interested in population the ory. (Readers looking for background or prerequisites will find much of it in Hal Caswell's Matrix population models: construction, analysis, and in terpretation (Sinauer 1989) ). This book is in essence a progress report and is deliberately brief; I hope that it is not mystifying. I have not attempted to be complete about either the history or the subject, although most sig nificant results and methods are presented.


Matrix Population Models

Matrix Population Models

Author: Hal Caswell

Publisher: Sinauer

Published: 2006-05-10

Total Pages: 0

ISBN-13: 9780878931217

DOWNLOAD EBOOK

This book provides a complete treatment of matrix population models and their applications in ecology and demography. It is written for graduate students and researchers in ecology, population biology, conservation biology and human demography.


Using Science to Improve the BLM Wild Horse and Burro Program

Using Science to Improve the BLM Wild Horse and Burro Program

Author: National Research Council

Publisher: National Academies Press

Published: 2013-10-04

Total Pages: 399

ISBN-13: 0309264944

DOWNLOAD EBOOK

Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward reviews the science that underpins the Bureau of Land Management's oversight of free-ranging horses and burros on federal public lands in the western United States, concluding that constructive changes could be implemented. The Wild Horse and Burro Program has not used scientifically rigorous methods to estimate the population sizes of horses and burros, to model the effects of management actions on the animals, or to assess the availability and use of forage on rangelands. Evidence suggests that horse populations are growing by 15 to 20 percent each year, a level that is unsustainable for maintaining healthy horse populations as well as healthy ecosystems. Promising fertility-control methods are available to help limit this population growth, however. In addition, science-based methods exist for improving population estimates, predicting the effects of management practices in order to maintain genetically diverse, healthy populations, and estimating the productivity of rangelands. Greater transparency in how science-based methods are used to inform management decisions may help increase public confidence in the Wild Horse and Burro Program.


Population Ecology in Practice

Population Ecology in Practice

Author: Dennis L. Murray

Publisher: John Wiley & Sons

Published: 2020-02-10

Total Pages: 448

ISBN-13: 0470674148

DOWNLOAD EBOOK

A synthesis of contemporary analytical and modeling approaches in population ecology The book provides an overview of the key analytical approaches that are currently used in demographic, genetic, and spatial analyses in population ecology. The chapters present current problems, introduce advances in analytical methods and models, and demonstrate the applications of quantitative methods to ecological data. The book covers new tools for designing robust field studies; estimation of abundance and demographic rates; matrix population models and analyses of population dynamics; and current approaches for genetic and spatial analysis. Each chapter is illustrated by empirical examples based on real datasets, with a companion website that offers online exercises and examples of computer code in the R statistical software platform. Fills a niche for a book that emphasizes applied aspects of population analysis Covers many of the current methods being used to analyse population dynamics and structure Illustrates the application of specific analytical methods through worked examples based on real datasets Offers readers the opportunity to work through examples or adapt the routines to their own datasets using computer code in the R statistical platform Population Ecology in Practice is an excellent book for upper-level undergraduate and graduate students taking courses in population ecology or ecological statistics, as well as established researchers needing a desktop reference for contemporary methods used to develop robust population assessments.