Stable Adaptive Neural Network Control

Stable Adaptive Neural Network Control

Author: S.S. Ge

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 296

ISBN-13: 1475765770

DOWNLOAD EBOOK

Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications.


Stable Adaptive Control and Estimation for Nonlinear Systems

Stable Adaptive Control and Estimation for Nonlinear Systems

Author: Jeffrey T. Spooner

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 564

ISBN-13: 0471460974

DOWNLOAD EBOOK

Thema dieses Buches ist die Anwendung neuronaler Netze und Fuzzy-Logic-Methoden zur Identifikation und Steuerung nichtlinear-dynamischer Systeme. Dabei werden fortgeschrittene Konzepte der herkömmlichen Steuerungstheorie mit den intuitiven Eigenschaften intelligenter Systeme kombiniert, um praxisrelevante Steuerungsaufgaben zu lösen. Die Autoren bieten viel Hintergrundmaterial; ausgearbeitete Beispiele und Übungsaufgaben helfen Studenten und Praktikern beim Vertiefen des Stoffes. Lösungen zu den Aufgaben sowie MATLAB-Codebeispiele sind ebenfalls enthalten.


Stable Adaptive Neural Network Control

Stable Adaptive Neural Network Control

Author: S.S. Ge

Publisher: Elsevier

Published: 2002

Total Pages: 302

ISBN-13: 9780792375975

DOWNLOAD EBOOK

While neural network control has been successfully applied in various practical applications, many important issues, such as stability, robustness, and performance, have not been extensively researched for neural adaptive systems. Motivated by the need for systematic neural control strategies for nonlinear systems, Stable Adaptive Neural Network Control offers an in-depth study of stable adaptive control designs using approximation-based techniques, and presents rigorous analysis for system stability and control performance. Both linearly parameterized and multi-layer neural networks (NN) are discussed and employed in the design of adaptive NN control systems for completeness. Stable adaptive NN control has been thoroughly investigated for several classes of nonlinear systems, including nonlinear systems in Brunovsky form, nonlinear systems in strict-feedback and pure-feedback forms, nonaffine nonlinear systems, and a class of MIMO nonlinear systems. In addition, the developed design methodologies are not only applied to typical example systems, but also to real application-oriented systems, such as the variable length pendulum system, the underactuated inverted pendulum system and nonaffine nonlinear chemical processes (CSTR).


Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Author: Jinkun Liu

Publisher: Springer Science & Business Media

Published: 2013-01-26

Total Pages: 375

ISBN-13: 3642348165

DOWNLOAD EBOOK

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.


Applications of Neural Adaptive Control Technology

Applications of Neural Adaptive Control Technology

Author: Jens Kalkkuhl

Publisher: World Scientific

Published: 1997

Total Pages: 328

ISBN-13: 9789810231514

DOWNLOAD EBOOK

This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.


Neural Adaptive Control Technology

Neural Adaptive Control Technology

Author: Rafa? ?bikowski

Publisher: World Scientific

Published: 1996

Total Pages: 368

ISBN-13: 9789810225575

DOWNLOAD EBOOK

This book is an outgrowth of the workshop on Neural Adaptive Control Technology, NACT I, held in 1995 in Glasgow. Selected workshop participants were asked to substantially expand and revise their contributions to make them into full papers.The workshop was organised in connection with a three-year European Union funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland). A major aim of the NACT project is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from Daimler-Benz.In the book emphasis is put on development of sound theory of neural adaptive control for nonlinear control systems, but firmly anchored in the engineering context of industrial practice. Therefore the contributors are both renowned academics and practitioners from major industrial users of neurocontrol.


Functional Adaptive Control

Functional Adaptive Control

Author: Simon G. Fabri

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 275

ISBN-13: 144710319X

DOWNLOAD EBOOK

Unique in its systematic approach to stochastic systems, this book presents a wide range of techniques that lead to novel strategies for effecting intelligent control of complex systems that are typically characterised by uncertainty, nonlinear dynamics, component failure, unpredictable disturbances, multi-modality and high dimensional spaces.


Adaptive Neural Network Control of Robotic Manipulators

Adaptive Neural Network Control of Robotic Manipulators

Author: Tong Heng Lee

Publisher: World Scientific

Published: 1998

Total Pages: 400

ISBN-13: 9789810234522

DOWNLOAD EBOOK

Introduction; Mathematical background; Dynamic modelling of robots; Structured network modelling of robots; Adaptive neural network control of robots; Neural network model reference adaptive control; Flexible joint robots; task space and force control; Bibliography; Computer simulation; Simulation software in C.


Nonlinear and Adaptive Control with Applications

Nonlinear and Adaptive Control with Applications

Author: Alessandro Astolfi

Publisher: Springer Science & Business Media

Published: 2007-12-06

Total Pages: 302

ISBN-13: 1848000669

DOWNLOAD EBOOK

The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.