Stability Theory of Differential Equations

Stability Theory of Differential Equations

Author: Richard Bellman

Publisher: Courier Corporation

Published: 2013-02-20

Total Pages: 178

ISBN-13: 0486150135

DOWNLOAD EBOOK

Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.


Ordinary Differential Equations and Stability Theory:

Ordinary Differential Equations and Stability Theory:

Author: David A. Sanchez

Publisher: Courier Dover Publications

Published: 2019-09-18

Total Pages: 179

ISBN-13: 0486837599

DOWNLOAD EBOOK

This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.


Stability Theory of Dynamical Systems

Stability Theory of Dynamical Systems

Author: N.P. Bhatia

Publisher: Springer Science & Business Media

Published: 2002-01-10

Total Pages: 252

ISBN-13: 9783540427483

DOWNLOAD EBOOK

Reprint of classic reference work. Over 400 books have been published in the series Classics in Mathematics, many remain standard references for their subject. All books in this series are reissued in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. "... The book has many good points: clear organization, historical notes and references at the end of every chapter, and an excellent bibliography. The text is well-written, at a level appropriate for the intended audience, and it represents a very good introduction to the basic theory of dynamical systems."


Studies in Non-Linear Stability Theory

Studies in Non-Linear Stability Theory

Author: Wiktor Eckhaus

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 125

ISBN-13: 3642883176

DOWNLOAD EBOOK

Non-linear stability problems formulated in terms of non-linear partial differential equations have only recently begun to attract attention and it will probably take some time before our understanding of those problems reaches some degree of maturity. The passage from the more classical linear analysis to a non-linear analysis increases the mathematical complexity of the stability theory to a point where it may become discouraging, while some of the more usual mathematical methods lose their applicability. Although considerable progress has been made in recent years, notably in the field of fluid mechanics, much still remains to be done before a more permanent outline of the subject can be established. I have not tried to present in this monograph an account of what has been accomplished, since the rapidly changing features of the field make the periodical literature a more appropriate place for such a review. The aim of this book is to present one particular line of research, originally developed in a series of papers published in 'Journal de Mecanique' 1962-1963, in which I attempted to construct a mathematical theory for certain classes of non-linear stability problems, and to gain some understanding of the non-linear phenomena which are involved. The opportunity to collect the material in this volume has permitted a more coherent presentation, while various points of the analysis have been developed in greater detaiL I hope that a more unified form of the theory has thus been achieved.


Theory of Integro-Differential Equations

Theory of Integro-Differential Equations

Author: V. Lakshmikantham

Publisher: CRC Press

Published: 1995-03-15

Total Pages: 376

ISBN-13: 9782884490009

DOWNLOAD EBOOK

This unique monograph investigates the theory and applications of Volterra integro-differential equations. Whilst covering the basic theory behind these equations it also studies their qualitative properties and discusses a large number of applications. This comprehensive work presents a unified framework to investigate the fundamental existence of theory, treats stability theory in terms of Lyapunov functions and functionals, develops the theory of integro-differential equations with impulse effects, and deals with linear evolution equations in abstract spaces. Various applications of integro-differential equations, such as population dynamics, nuclear reactors, viscoelasticity, wave propagation and engineering systems, are discussed, making this book indispensable for mathematicians and engineers alike.


Stability, Instability and Chaos

Stability, Instability and Chaos

Author: Paul Glendinning

Publisher: Cambridge University Press

Published: 1994-11-25

Total Pages: 408

ISBN-13: 9780521425667

DOWNLOAD EBOOK

An introduction to nonlinear differential equations which equips undergraduate students with the know-how to appreciate stability theory and bifurcation.


Stability of Nonautonomous Differential Equations

Stability of Nonautonomous Differential Equations

Author: Luis Barreira

Publisher: Springer

Published: 2007-09-26

Total Pages: 288

ISBN-13: 3540747753

DOWNLOAD EBOOK

This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.


Stability of Linear Delay Differential Equations

Stability of Linear Delay Differential Equations

Author: Dimitri Breda

Publisher: Springer

Published: 2014-10-21

Total Pages: 162

ISBN-13: 149392107X

DOWNLOAD EBOOK

This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.