Stability of Linear Delay Differential Equations

Stability of Linear Delay Differential Equations

Author: Dimitri Breda

Publisher: Springer

Published: 2014-10-21

Total Pages: 162

ISBN-13: 149392107X

DOWNLOAD EBOOK

This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.


Stability and Oscillations in Delay Differential Equations of Population Dynamics

Stability and Oscillations in Delay Differential Equations of Population Dynamics

Author: K. Gopalsamy

Publisher: Springer Science & Business Media

Published: 1992-03-31

Total Pages: 526

ISBN-13: 9780792315940

DOWNLOAD EBOOK

This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.


Ordinary and Delay Differential Equations

Ordinary and Delay Differential Equations

Author: R. D. Driver

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 513

ISBN-13: 1468494678

DOWNLOAD EBOOK

This textbook is designed for the intermediate-level course on ordinary differential equations offered at many universities and colleges. It treats, as standard topics of such a course: existence and uniqueness theory, linear s- terns, stability theory, and introductory phase-plane analysis of autonomous second order systems. The unique feature of the book is its further inc- sion of a substantial introduction to delay differential eq- tions. Such equations are motivated by problems in control theory, physics, biology, ecology, economics, inventory c- trol, and the theory of nuclear reactors. The surge of interest in delay differential equations during the past two or three decades is evidenced by th- sands of research papers on the subject and about 20 published books devoted in whole or in part to these equations. The v * ... books include those of Myskis [1951], El' sgol' c [1955] and [1964], Pinney [1958], Krasovskil [1959], Bellman and Cooke [1963], Norkin [1965], Halanay [1966], Oguztoreli [1966], Lakshmikantham and Leela [1969], Mitropol'skir and Martynjuk [1969], Martynjuk [1971], and Hale [1971], plus a number of symposium and seminar proceedings published in the U.S. and the U.S.S.R. These books have influenced the present textbook.


Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Author: K. E. Brenan

Publisher: SIAM

Published: 1996-01-01

Total Pages: 268

ISBN-13: 9781611971224

DOWNLOAD EBOOK

Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.


An Introduction to Delay Differential Equations with Applications to the Life Sciences

An Introduction to Delay Differential Equations with Applications to the Life Sciences

Author: hal smith

Publisher: Springer Science & Business Media

Published: 2010-09-29

Total Pages: 178

ISBN-13: 1441976469

DOWNLOAD EBOOK

This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.


Nonnegative Matrices in the Mathematical Sciences

Nonnegative Matrices in the Mathematical Sciences

Author: Abraham Berman

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 337

ISBN-13: 1483260860

DOWNLOAD EBOOK

Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.


Numerical Methods for Delay Differential Equations

Numerical Methods for Delay Differential Equations

Author: Alfredo Bellen

Publisher: OUP Oxford

Published: 2003-03-20

Total Pages: 410

ISBN-13: 0191523135

DOWNLOAD EBOOK

The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.


Delay Differential Equations

Delay Differential Equations

Author: Balakumar Balachandran

Publisher: Springer Science & Business Media

Published: 2009-04-05

Total Pages: 349

ISBN-13: 0387855955

DOWNLOAD EBOOK

Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.


Nonlinear Dynamics

Nonlinear Dynamics

Author: Marc R Roussel

Publisher: Morgan & Claypool Publishers

Published: 2019-05-01

Total Pages: 190

ISBN-13: 1643274643

DOWNLOAD EBOOK

This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented.