Stability Analysis of Discrete Event Systems

Stability Analysis of Discrete Event Systems

Author: Kevin M. Passino

Publisher: Wiley-Interscience

Published: 1998-03-16

Total Pages: 228

ISBN-13:

DOWNLOAD EBOOK

An authoritative presentation on an important emerging field. Discrete event systems are ubiquitous in modern society, and we rely heavily on their proper design, correct operation, and performance. Written by leaders in the field who have helped establish the foundations of the theory and applied the methods to a wide variety of applications, Stability Analysis of Discrete Event Systems is useful both as a textbook (homework problems are included) and for researchers in systems and control theory. This book includes many examples and three detailed case studies: computer network load balancing, manufacturing system scheduling, and intelligent control systems. Important features of this book include: A concise introduction to discrete event system modeling—including Petri nets Comprehensive treatment of stability concepts and Lyapunov analysis methods Stability of Petri models Case studies in Computer network load balancing system behavior and analysis Manufacturing system scheduler design and analysis Intelligent control system modeling and analysis (for expert control systems) An outlook on the role of stability concepts and analysis in intelligent, autonomous, and hybrid systems.


Stability of Dynamical Systems

Stability of Dynamical Systems

Author: Anthony N. Michel

Publisher: Springer

Published: 2015-03-30

Total Pages: 669

ISBN-13: 3319152750

DOWNLOAD EBOOK

The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions. Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions - Specialization of this stability theory to finite-dimensional dynamical systems - Specialization of this stability theory to infinite-dimensional dynamical systems Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems. It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences. Review of the First Edition: “The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems. [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.” - Alessandro Astolfi, IEEE Control Systems Magazine, February 2009


Stability of Dynamical Systems

Stability of Dynamical Systems

Author:

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 516

ISBN-13: 0817644865

DOWNLOAD EBOOK

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.


Discrete Control Systems

Discrete Control Systems

Author: Yoshifumi Okuyama

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 259

ISBN-13: 1447156676

DOWNLOAD EBOOK

Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systems for continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete event systems. The nonlinear phenomena associated with practically important event-driven systems are elucidated. The dynamics and stability of finite-state and discrete-event systems are defined. Academic researchers interested in the uses of discrete modelling and control of continuous systems will find Discrete Control Systems instructive. The inclusion of end-of-chapter problems also makes the book suitable for use in self study either by professional control engineers or graduate students supplementing a more formal regimen of learning.


Supervisory Control of Discrete-Event Systems

Supervisory Control of Discrete-Event Systems

Author: W. Murray Wonham

Publisher: Springer

Published: 2018-08-17

Total Pages: 504

ISBN-13: 3319774522

DOWNLOAD EBOOK

This book shows how supervisory control theory (SCT) supports the formulation of various control problems of standard types, like the synthesis of controlled dynamic invariants by state feedback, and the resolution of such problems in terms of naturally definable control-theoretic concepts and properties, like reachability, controllability and observability. It exploits a simple, abstract model of controlled discrete-event systems (DES) that has proved to be tractable, appealing to control specialists, and expressive of a range of control-theoretic ideas. It allows readers to choose between automaton-based and dually language-based forms of SCT, depending on whether their preference is for an internal-structural or external-behavioral description of the problem. The monograph begins with two chapters on algebraic and linguistic preliminaries and the fundamental concepts and results of SCT are introduced. To handle complexity caused by system scale, architectural approaches—the horizontal modularity of decentralized and distributed supervision and the vertical modularity of hierarchical supervision—are introduced. Supervisory control under partial observation and state-based supervisory control are also addressed; in the latter, a vector DES model that exploits internal regularity of algebraic structure is proposed. Finally SCT is generalized to deal with timed DES by incorporating temporal features in addition to logical ones. Researchers and graduate students working with the control of discrete-event systems or who are interested in the development of supervisory control methods will find this book an invaluable aid in their studies. The text will also be of assistance to researchers in manufacturing, logistics, communications and transportation, areas which provide plentiful examples of the class of systems being discussed.


Swarm Stability and Optimization

Swarm Stability and Optimization

Author: Veysel Gazi

Publisher: Springer Science & Business Media

Published: 2011-02-01

Total Pages: 299

ISBN-13: 3642180418

DOWNLOAD EBOOK

Swarming species such as flocks of birds or schools of fish exhibit fascinating collective behaviors during migration and predator avoidance. Similarly, engineered multi-agent dynamic systems such as groups of autonomous ground, underwater, or air vehicles (“vehicle swarms”) exhibit sophisticated collective behaviors while maneuvering. In this book we show how to model and control a wide range of such multi-agent dynamic systems and analyze their collective behavior using both stability theoretic and simulation-based approaches. In particular, we investigate problems such as group aggregation, social foraging, formation control, swarm tracking, distributed agreement, and engineering optimization inspired by swarm behavior.


Qualitative Theory of Dynamical Systems

Qualitative Theory of Dynamical Systems

Author: Anthony Michel

Publisher: CRC Press

Published: 2001-01-04

Total Pages: 738

ISBN-13: 9780203908297

DOWNLOAD EBOOK

"Illuminates the most important results of the Lyapunov and Lagrange stability theory for a general class of dynamical systems by developing topics in a metric space independantly of equations, inequalities, or inclusions. Applies the general theory to specific classes of equations. Presents new and expanded material on the stability analysis of hybrid dynamical systems and dynamical systems with discontinuous dynamics."


Process Modelling and Model Analysis

Process Modelling and Model Analysis

Author: Ian T. Cameron

Publisher: Elsevier

Published: 2001-05-23

Total Pages: 561

ISBN-13: 0080514928

DOWNLOAD EBOOK

Process Modelling and Model Analysis describes the use of models in process engineering. Process engineering is all about manufacturing--of just about anything! To manage processing and manufacturing systematically, the engineer has to bring together many different techniques and analyses of the interaction between various aspects of the process. For example, process engineers would apply models to perform feasibility analyses of novel process designs, assess environmental impact, and detect potential hazards or accidents. To manage complex systems and enable process design, the behavior of systems is reduced to simple mathematical forms. This book provides a systematic approach to the mathematical development of process models and explains how to analyze those models. Additionally, there is a comprehensive bibliography for further reading, a question and answer section, and an accompanying Web site developed by the authors with additional data and exercises. - Introduces a structured modeling methodology emphasizing the importance of the modeling goal and including key steps such as model verification, calibration, and validation - Focuses on novel and advanced modeling techniques such as discrete, hybrid, hierarchical, and empirical modeling - Illustrates the notions, tools, and techniques of process modeling with examples and advances applications