A standards-based, comprehensive math intervention curriculum for the state of California. Designed for students identified with math deficiencies who have not responded to reteaching efforts or who have a sustained lack of adquate progress in mathematics. This program provides intensive focus on developing foundational understanding and skills. It provides explicit, scientifically based instruction emphasizing the five critical elements of mathematics proficiency: understanding, computing, applying reasoning/problem solving , and engagement.
In this important book for pre- and in-service teachers, early math experts Douglas Clements and Julie Sarama show how "learning trajectories" help diagnose a child’s level of mathematical understanding and provide guidance for teaching. By focusing on the inherent delight and curiosity behind young children’s mathematical reasoning, learning trajectories ultimately make teaching more joyous. They help teachers understand the varying levels of knowledge exhibited by individual students, which in turn allows them to better meet the learning needs of all children. Using straightforward, no-nonsense language, this book summarizes the current research about how children learn mathematics, and how to build on what children already know to realize more effective teaching. This second edition of Learning and Teaching Early Math remains the definitive, research-based resource to help teachers understand the learning trajectories of early mathematics and become quintessential professionals. Updates to the new edition include: • Explicit connections between Learning Trajectories and the new Common Core State Standards. • New coverage of patterns and patterning. • Incorporation of hundreds of recent research studies.
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
This book emanated primarily from concerns that the mathematical capabilities of young children continue to receive inadequate attention in both the research and instructional arenas. Research over many years has revealed that young children have sophisticated mathematical minds and a natural eagerness to engage in a range of mathematical activities. As the chapters in this book attest, current research is showing that young children are developing complex mathematical knowledge and abstract reasoning a good deal earlier than previously thought. A range of studies in prior to school and early school settings indicate that young learners do possess cognitive capacities which, with appropriately designed and implemented learning experiences, can enable forms of reasoning not typically seen in the early years. Although there is a large and coherent body of research on individual content domains such as counting and arithmetic, there have been remarkably few studies that have attempted to describe characteristics of structural development in young students’ mathematics. Collectively, the chapters highlight the importance of providing more exciting, relevant, and challenging 21st century mathematics learning for our young students. The chapters provide a broad scope in their topics and approaches to advancing young children’s mathematical learning. They incorporate studies that highlight the importance of pattern and structure across the curriculum, studies that target particular content such as statistics, early algebra, and beginning number, and studies that consider how technology and other tools can facilitate early mathematical development. Reconceptualising the professional learning of teachers in promoting young children’s mathematics, including a consideration of the role of play, is also addressed.
Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education brings together the combined wisdom of a diverse group of experts involved with early childhood mathematics. The book originates from the landmark 2000 Conference on Standards for Pre-kindergarten and Kindergarten Mathematics Education, attended by representatives from almost every state developing standards for young children's mathematics; federal government officials; mathematicians; mathematics educators; researchers from mathematics education, early childhood education, and psychology; curriculum developers; teachers; policymakers; and professionals from organizations such as the National Conference of Teachers of Mathematics and the National Association for the Education of Young Children. The main goal of the Conference was to work collectively to help those responsible for framing and implementing early childhood mathematics standards. Although it has its roots in the Conference, the expanded scope of the standards and recommendations covered in this book includes the full range of kindergarten to grade 2. The volume is organized into two main parts and an online appendix (http://www.gse.buffalo.edu/org/conference/). Part One, Major Themes and Recommendations, offers a framework for thinking about pre-kindergarten - grade 2 mathematics education and specific recommendations. Part Two, Elaboration of Major Themes and Recommendations, provides substantive detail regarding young students' understandings of mathematical ideas. Each Part includes five parallel subsections: "Standards in Early Childhood Education"; "Math Standards and Guidelines"; "Curriculum, Learning, Teaching, and Assessment"; "Professional Development"; and "Toward the Future: Implementation and Policy." As a whole the book: * presents comprehensive summaries of research that provide specific guidelines for standards, curriculum, and teaching; * takes the recent reports and recommendations for early childhood mathematics education to the next level; * integrates practical details and research throughout; and * provides a succinct, but thorough review of research on the topics, sequences, and learning trajectories that children can and should learn at each of their first years of life, with specific developmental guidelines that suggest appropriate content for each topic for each year from 2-year-olds to 7-year-olds. This is an indispensable volume for mathematics educators, researchers, curriculum developers, teachers and policymakers, including those who create standards, scope and sequences, and curricula for young children and professional teacher development materials, and students in mathematics education, early childhood trainers, teacher educators, and faculty in mathematics education.
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
Everyday Mathematics is a comprehensive Pre-K through Grade 6 mathematics program engineered for the Common Core State Standards. Developed by The University of Chicago, School Mathematics Project, the Everyday Mathematics spiral curriculum continually reinforces abstract math concepts through concrete real-world applications. -- Provided by publisher.
The second edition continues the mission of bringing together important new mathematics education research that makes a difference in both theory and practice. It updates and extends the Handbook’s original key themes and issues for international research in mathematics education for the 21st century, namely: priorities in international mathematics education research lifelong democratic access to powerful mathematical ideas advances in research methodologies influences of advanced technologies. Each of these themes is examined in terms of learners, teachers, and learning contexts, with theory development being an important component of all these aspects. This edition also examines other catalysts that have gained increased import in recent years including a stronger focus on the teacher and teacher practice, a renewed interest in theory development, an increased focus on the mathematics needed in work place settings, and a proliferation of research designs and methodologies that have provided unprecedented opportunities for investigating (and ultimately improving) mathematical teaching and learning. This edition includes ten totally new chapters; all other chapters are thoroughly revised and updated.
The book synergizes research on number across two disciplines—mathematics education and psychology. The underlying problem the book addresses is how the brain constructs number. The opening chapter frames the problem in terms of children’s activity, including mental and physical actions. Subsequent chapters are organized into sections that address specific domains of number: natural numbers, fractions, and integers. Chapters within each section address ways that children build upon biological primitives (e.g., subitizing) and prior constructs (e.g., counting sequences) to construct number. The book relies on co-authored chapters and commentaries at the end of each section to create dialogue between junior faculty and senior researchers, as well as between psychologists and mathematics educators. The final chapter brings this work together around the framework of children’s activity and additional themes that arise in the collective work. The book is aimed to appeal to mathematics educators, mathematics teacher educators, mathematics education researchers, educational psychologists, cognitive psychologists, and developmental psychologists.