Sponges (phylum Porifera) are known to be very rich sources for bioactive compounds, mainly secondary metabolites. Main efforts are devoted to cell- and mariculture of sponges to assure a sustainable exploitation of bioactive compounds from biological starting material. These activities are flanked by improved technologies to cultivate bacteria and fungi which are associated with the sponges. It is the hope that by elucidating the strategies of interaction between microorganisms and their host (sponge), by modern cell and molecular biological methods, a more comprehensive cultivation of the symbiotic organisms will be possible. The next step in the transfer of knowledge to biotechnological applications is the isolation, characterization and structural determination of the bioactive compounds by sophisticated chemical approaches.
Research whilst compiling this book has uncovered a fauna about twice the size as that previously published in the literature and consequently Systema Porifera revises and stabilizes the systematics of the phylum to accommodate this new knowledge in a contemporary framework. Practical tools (key illustrations, descriptions of character) are provided to facilitate the assignment of approximately 680 extant and 100 fossil genera. Systema Porifera is unique making sponge taxonomy widely available at the practical level of classification (genera, families, order). It is a taxonomic revision of sponges and spongiomorphis (such as sphinctozoans and archaeocyathans) based on re-evaluation of type materials and evidence. It is also a practical guide to sponge identification providing descriptions and illustrations of characters and interpretation of their importance to systematics. Systema Porifera addresses many long standing nomenclatural problems and provides a sound baseline for future debate on sponges and their place in time and space. Systema Porifera describes 3 classes, 7 subclasses, 24 orders, 127 families and 682 valid genera of extant sponges (with over 1600 nominal generic names and an additional 500 invalid names treated). Treatment of the fossil fauna is less comprehensive or critical, although 6 classes, 30 orders, 245 families and 998 fossil genera are mentioned. Keys to all recent and many fossil taxa are provided.
One of the major questions in the evolution of animals is the transition from unicellular to multicellular organization, which resulted in the emergence of Metazoa through a hypothetical Urmetazoa. The Comparative Embryology of Sponges contains abundant original and literary data on comparative embryology and morphology of the Porifera (Sponges), a group of 'lower Metazoa'. On the basis of this material, original typization of the development of Sponges is given and the problems concerning origin and evolution of Porifera and their ontogenesis are discussed. A morphogenetic interpretation of the body plan development during embryogenesis, metamorphosis and asexual reproduction in Sponges is proposed. Special attention is given to the analysis of characteristic features of the ontogenesis in Porifera. The book pursues three primary goals: 1) generalization of all existing information on individual development of sponges, its classification and a statement according to taxonomical structure of Porifera; 2) revealing of heterogeneity of morphogenesis and peculiarities of ontogeneses in various clades of Porifera, and also their correlations with the organization, both adult sponges, and their larvae; 3) revealing homology of morphogeneses in both Porifera and Eumetazoa, testifying to the general evolutionary roots of multicellular animals, and peculiar features of sponges' morphogeneses and ontogenesis. This book will be of interest to embryologists, zoologists, morphologists and researchers in evolutionary biology.
Modem biology owes much to the study of favorable model systems which fa cilitates the realization of critical experiments and results in the introduction of new concepts. Examples of such systems are numerous and studies of them are regularly recognized by the scientific community. The 1983 Nobel Prize in Med icine and Physiology is a magnificent example in which com plants served as the experimental model. In a manner somewhat more modest, other biological systems have attracted recognition due to their critical phylogenetic position, or indeed because of their uniqueness which distinguishes them from all other organisms. Assuredly, among the whole assemblage ofliving organisms, sponges stand out as worthy of interest by scientists: they are simultaneously models, an important group in evolution, and animals unlike others. As early as the beginning of this century, sponges appeared as exceptional models for the study of phenomena of cell recognition. Innumerable works have been dedicated to understanding the mechanisms which assure the reaggregation of dissociated cells and the reconstitution of a functional individual. Today, re search on these phenomena is at the ultimate, molecular level. Through an as semblage of characteristics the sponges are, based upon all available evidence, the most primitive Metazoans. Their tissues-perhaps one can say their cell groups-are loosely assembled (they possess no tight or gap junctions), cell dif ferentiation appears highly labile, and they do not develop any true organs. But, they are most certainly Metazoans.
Sea squirts and sponges are found in most seafloor habitats around the coasts of Britain and Ireland. Despite being the dominant life forms in many areas, these two groups of under-recorded marine animals are often confused with one another, and most divers and snorkellers can recognise and name very few species. In fact, around 500 species of Ascidiacea (sea squirts) and Porifera (sponges) have been described so far in British and Irish seas, corresponding to over 4% of the world’s total. This book is recommended reading for anyone who wants to identify and discover more about these fascinating and diverse animals. Rather than relying on the characteristics of preserved specimens, this guide uses marine photography and detailed underwater observations to concentrate on in situ features, allowing you to record species without collecting them. Most sea squirts found in Britain and Ireland’s shallow waters are included, together with the most easily recognised sponges. Whether you are a student, a diver, a rockpooler or simply an enthusiast, this is an essential companion. ● Over 115 species described in detail with in situ photographs to help with underwater recognition ● Information on size, depth, habitat and distribution ● Key distinguishing features and areas of confusion in identification highlighted ● Details of body structure, life histories, digestive and reproductive processes ● Information about predators, interactions between species, non-native and problem invasive species
Offers a comprehensive guide to the isolation, properties and applications of chitin and chitosan Chitin and Chitosan: Properties and Applications presents a comprehensive review of the isolation, properties and applications of chitin and chitosan. These promising biomaterials have the potential to be broadly applied and there is a growing market for these biopolymers in areas such as medical and pharmaceutical, packaging, agricultural, textile, cosmetics, nanoparticles and more. The authors – noted experts in the field – explore the isolation, characterization and the physical and chemical properties of chitin and chitosan. They also examine their properties such as hydrogels, immunomodulation and biotechnology, antimicrobial activity and chemical enzymatic modifications. The book offers an analysis of the myriad medical and pharmaceutical applications as well as a review of applications in other areas. In addition, the authors discuss regulations, markets and perspectives for the use of chitin and chitosan. This important book: Offers a thorough review of the isolation, properties and applications of chitin and chitosan. Contains information on the wide-ranging applications and growing market demand for chitin and chitosan Includes a discussion of current regulations and the outlook for the future Written for Researchers in academia and industry who are working in the fields of chitin and chitosan, Chitin and Chitosan: Properties and Applications offers a review of these promising biomaterials that have great potential due to their material properties and biological functionalities.
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
Atlas of Marine Invertebrate Larvae, Second Edition covers the origins and history of marine larval science, contemporary state-of-the-art approaches to larval development and biology, and the highest-quality images and schematics showing the broadest diversity of marine larvae in the animal tree of life. This book illustrates larval body plans, the anatomy of their organ systems (muscular, sensory, digestive), including distinct ciliation patterns that facilitate swimming, and the complex metamorphic changes they undergo between different larval and growth stages. Each chapter contains in-text references that direct readers to both historical and contemporary research on the forms, functions, behaviors and biogeographical distributions of marine larvae.This book is a valuable and foundational resource for biologists across various disciplines, including biodiversity, biogeography, and developmental biology. Ecologists, taxonomists, oceanographers, and environmental scientists also benefit from the complete coverage of marine larval forms offered by this book. Additionally, the broad scope and phyletic coverage of marine biodiversity presented in this atlas is ideal for students in oceanography and marine biology, animal development, biological oceanography and invertebrate zoology. - Covers every major marine invertebrate clade within the Metazoa - Includes an expanded introductory chapter on the biology, ecology and roles of larvae in marine food webs and the movements of marine invertebrate species within the world's oceans - Provides complete updates to each chapter, including condensed, comparative background information on taxon-specific development and life-history patterns - Features detailed anatomical schematics and drawings, accompanied by compound, confocal and scanning electron micrographs for multiple recognized clades within each phylum
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
This book summarizes the latest advances in sponge science through a concise selection of studies presented at the VIII World Sponge Conference. The collection of articles reflects hot, ongoing debates in molecular research, such as the monophyletic versus paraphyletic nature of the sponge group, or the new awareness on pros and cons of standard barcodes and other markers in sponge taxonomy and phylogeny. It also features articles showing how the new sequencing technologies reveal the functional and phylogenetic complexity of the "microbial universe" associated to sponge tissues. The ecological interactions of sponges, the effects of nutrients and pollutants, the variability in reproductive patterns, and the processes generating genotypic and phenotypic variability in sponge populations are covered in several contributions. Zoogeography, population structure and dynamics are also approached with both traditional and molecular tools. The effect of anthropogenic disturbance on the natural environment finds its place in this volume with papers dealing with metal accumulation and the potential role of sponges as biomonitors. Biodiversity data from unexplored tropical and deep sea areas are presented. We hope readers will enjoy the selection of papers, which we believe represent collectively a significant contribution to our current understanding of sponges. Previously published in Hydrobiologia, vol. 687, 2012