Spintronic 2D Materials

Spintronic 2D Materials

Author: Wenqing Liu

Publisher: Woodhead Publishing

Published: 2019-11-28

Total Pages: 322

ISBN-13: 0081021550

DOWNLOAD EBOOK

Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book. Discusses the fundamentals and applications of spintronics of 2D materials, such as graphene, topological insulators and transition metal dichalcogenides Includes an in-depth look at each materials system, from material growth, device fabrication and characterization techniques Presents the latest solutions on key challenges, such as the spin lifetime of 2D materials, spin-injection efficiency, the potential proximity effects, and much more


Spin Dynamics in Two-Dimensional Quantum Materials

Spin Dynamics in Two-Dimensional Quantum Materials

Author: Marc Vila Tusell

Publisher: Springer Nature

Published: 2021-11-10

Total Pages: 169

ISBN-13: 3030861147

DOWNLOAD EBOOK

This thesis focuses on the exploration of nontrivial spin dynamics in graphene-based devices and topological materials, using realistic theoretical models and state-of-the-art quantum transport methodologies. The main outcomes of this work are: (i) the analysis of the crossover from diffusive to ballistic spin transport regimes in ultraclean graphene nonlocal devices, and (ii) investigation of spin transport and spin dynamics phenomena (such as the (quantum) spin Hall effect) in novel topological materials, such as monolayer Weyl semimetals WeTe2 and MoTe2. Indeed, the ballistic spin transport results are key for further interpretation of ultraclean spintronic devices, and will enable extracting precise values of spin diffusion lengths in diffusive transport and guide experiments in the (quasi)ballistic regime. Furthermore, the thesis provides an in-depth theoretical interpretation of puzzling huge measured efficiencies of the spin Hall effect in MoTe2, as well as a prediction of a novel canted quantum spin Hall effect in WTe2 with spins pointing in the yz plane.


Valleytronics in 2D Materials

Valleytronics in 2D Materials

Author: Kuan Eng Johnson Goh

Publisher: World Scientific Publishing Company

Published: 2023-04-30

Total Pages: 0

ISBN-13: 9789811229091

DOWNLOAD EBOOK

Driven by the advent of two-dimensional materials, valleytronics is emerging as the next hot field of research in materials science. While the use of charge or spin degrees of freedom in electronic materials as information carriers is familiar and well-appreciated, employment of the valley degree of freedom as an information carrier has remained elusive for many decades. Shortly following the discovery of isolated graphene, 2D semiconductors such as transition metal dichalcogenides were also isolated and investigated. We now understand that these materials can have separately addressable valleys because each valley can be uniquely coupled to a spin state. This imparts the ability to address different valleys (like pseudospins) with electric field, magnetic field, or light, and there is now a real possibility to engineer practical devices based on using valley as the information carrier.Valleytronics in 2D Materials is the first book in the world on the topic of valleytronics. The reader is introduced to the concept via a brief history emphasizing the challenges that impeded its development for so long. We then dive into the valley physics of 2D semiconductors to explain the recent excitement in 2D valleytronics, the scientific investigations to confirm the addressable valleys, and the attempts to engineer valley devices for practical purposes. The text takes on a decidedly practical approach towards the subject, seeking to bring the reader quickly into the field by presenting the minimum theoretical basis for understanding the use of the valley degree of freedom in devices. A selection of key works establishing the scientific underpinnings of valley addressability and control are described to help the reader grasp the current stage of understanding, the technical foundations established, and the open questions. The renewal in valleytronics is yet unfinished, but with more than a decade of research and engineering efforts devoted in recent times, this book seeks to provide a timely reference for students, scientists and engineers to join this exciting journey and perhaps help to create the next disruption in information technology.


Spin Current

Spin Current

Author: Sadamichi Maekawa

Publisher: Oxford University Press

Published: 2017

Total Pages: 541

ISBN-13: 0198787073

DOWNLOAD EBOOK

In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.


Spintronics

Spintronics

Author: Claudia Felser

Publisher: Springer Science & Business Media

Published: 2013-03-20

Total Pages: 379

ISBN-13: 9048138329

DOWNLOAD EBOOK

Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made with high spin polarization and, especially in the case of Heusler compounds, many material-related problems present in current-day 3d metal systems, can be overcome. Spintronics: From Materials to Devices provides an insight into the current research on Heusler compounds and offers a general understanding of structure–property relationships, including the influence of disorder and correlations on the electronic structure and interfaces. Spintronics devices such as magnetic tunnel junctions (MTJs) and giant magnetoresistance (GMR) devices, with current perpendicular to the plane, in which Co2 based Heusler compounds are used as new electrode materials, are also introduced. From materials design by theoretical methods and the preparation and properties of the materials to the production of thin films and devices, this monograph represents a valuable guide to both novices and experts in the fields of Chemistry, Physics, and Materials Science.


2D Monoelemental Materials (Xenes) and Related Technologies

2D Monoelemental Materials (Xenes) and Related Technologies

Author: Zongyu Huang

Publisher: CRC Press

Published: 2022-04-19

Total Pages: 166

ISBN-13: 1000562840

DOWNLOAD EBOOK

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.


Tuning the Spin Transport and Magnetic Properties of 2D Materials at the Atomic Scale

Tuning the Spin Transport and Magnetic Properties of 2D Materials at the Atomic Scale

Author: Tiancong Zhu

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The study of two-dimensional (2D) materials has attracted considerable attention in the past decade. Due to the reduced dimensionality and atomically thin nature of these materials, 2D materials carry many unique properties compared to their 3D counterparts. They are also highly tunable through surface modification or in proximity to other materials. The development of 2D materials has also made a significant impact in the field of spintronics, which studies the electron spin and its associated magnetic moment for computation and information storage. The long spin lifetime and record-setting spin diffusion length in graphene, the demonstration of strong modulation of spin transport in 2D material heterostructures, and the discovery of magnetism in 2D van der Waals materials have brought many new directions as well as opportunities for advancing the field of spintronics. This dissertation focuses on the work of studying and tuning the spin transport and magnetic properties in 2D materials at the atomic scale. The spin transport section will start with understanding the tunneling spin injection process in graphene (Chapter 3), which is critical for the operation of a spintronic device. Next is a detailed discussion about theoretical modeling for extracting spin lifetime anisotropy with oblique spin precession measurement (Chapter 4), which is a good method to understand the spin relaxation in 2D materials. Lastly, on the topic of spin transport, one of the first experimental demonstrations of proximity-induced exchange coupling and modulation of spin transport in graphene heterostructures is presented (Chapter 5). The magnetism in 2D materials section will start with the experimental demonstration of sublattice resolved hydrogen adsorption on bilayer graphene (Chapter 6), which provides a good method for realizing point defect induced magnetism in graphene-based systems. It will be followed with synthesis and characterization of intrinsic van der Waals magnet MnSe2 at the monolayer limit (Chapter 7), which is one of the first discoveries of room temperature intrinsic ferromagnetism in 2D van der Waals materials. Finally, some important tips in analyzing magnetic signals from 2D magnets with SQUID magnetometry will also be discussed (Chapter 8).


Electronic and Spin Dependent Phenomena in Two-dimensional Materials and Heterostructures

Electronic and Spin Dependent Phenomena in Two-dimensional Materials and Heterostructures

Author: Jinsong Xu (Ph. D. in physics)

Publisher:

Published: 2018

Total Pages: 156

ISBN-13:

DOWNLOAD EBOOK

Graphene has remarkable opportunities for spintronics due to its high mobility and long spin diffusion length, especially when encapsulated in hexagonal boron nitride (h-BN). Beyond the three basic processes of spin injection, spin transport, and spin detection, it is crucial to explore new methods of spin manipulation in order to develop novel architectures for spin-based logic. In the first chapter of this thesis, I briefly introduce the field of spintronics and graphene related research. In the second chapter, I present the spin diffusion model used in this thesis to analyze spin transport in graphene and heterostructures spintronics. In the third chapter, I present my work on gate-tunable spin transport in h-BN encapsulated graphene-based spin valves with one-dimensional ferromagnetic contacts. The non-local spin signal can be tuned by gate voltage and even change polarity. The gate-controlled spin polarity via magnetic proximity effect may overcome the usual need for an applied magnetic field and a magnetization reversal to implement the graphene-based spin logic. Beyond magnetic proximity effect, another route for graphene spintronics is to combine with other two-dimensional (2D) materials, such as transition metal dichalcogenide (TMDC). In the fourth chapter, I demonstrate spin injection from monolayer MoS2 to few-layer graphene following optical valley/spin exciation in MoS2 with circularly polarized light up to room temperature. The magnitude and direction of spin polarization is controlled by both helicity and photon energy. These results demonstrate a 2D spintronic/valleytronic system that achieves optical spin injection and lateral spin transport at room temperature in a single device, which paves the way for multifunctional 2D spintronic devices for memory and logic applications. While graphene/TMDC heterostructures hold great promise for the electrical and optical control of spins in graphene, the observed spin lifetimes in these heterostructures are short (


Handbook of Spintronics

Handbook of Spintronics

Author: Yongbing Xu

Publisher: Springer

Published: 2015-10-14

Total Pages: 0

ISBN-13: 9789400768918

DOWNLOAD EBOOK

Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.