Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices

Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices

Author: M G Cottam

Publisher: World Scientific

Published: 1994-03-28

Total Pages: 475

ISBN-13: 981450548X

DOWNLOAD EBOOK

In the past few years, there has been a rapidly growing interest in the properties of spin waves (or magnons) in ordered magnetic materials. These are the low-lying excitations that characterize the dynamical behavior of the magnetization variables in ferromagnets, ferrimagnets and antiferromagnets, particularly at low temperatures. Many of the recent developments concerning spin waves have been directed towards understanding their behavior in limited magnetic samples. At the same time, there have been dramatic advances in the experimental techniques, both for preparing high-quality magnetic samples in the form of thin films and superlattices and for the study of the spin-wave excitations themselves. Magnetic thin films have long been of technological as well as scientific interest and an understanding of both the linear and nonlinear aspects of their magnetic behavior is important.


Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures

Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures

Author: Anjan Barman

Publisher: Springer

Published: 2017-12-27

Total Pages: 166

ISBN-13: 3319662961

DOWNLOAD EBOOK

This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique.


Spin Waves

Spin Waves

Author: Daniel D. Stancil

Publisher: Springer Science & Business Media

Published: 2009-04-05

Total Pages: 348

ISBN-13: 0387778659

DOWNLOAD EBOOK

This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.


Handbook of Thin Films, Five-Volume Set

Handbook of Thin Films, Five-Volume Set

Author: Hari Singh Nalwa

Publisher: Academic Press

Published: 2001-10-29

Total Pages: 661

ISBN-13: 0125129084

DOWNLOAD EBOOK

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures. Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.


Ferromagnetic Resonance

Ferromagnetic Resonance

Author: Dr. Orhan Yalçın

Publisher: BoD – Books on Demand

Published: 2013-07-31

Total Pages: 252

ISBN-13: 9535111868

DOWNLOAD EBOOK

The book Ferromagnetic Resonance - Theory and Applications highlights recent advances at the interface between the science and technology of nanostructures (bilayer-multilayers, nanowires, spinel type nanoparticles, photonic crystal, etc.). The electromagnetic resonance techniques have become a central field of modern scientific and technical activity. The modern technical applications of ferromagnetic resonance are in spintronics, electronics, space navigation, remote-control equipment, radio engineering, electronic computers, maritime, electrical engineering, instrument-making and geophysical methods of prospecting.


Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices

Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices

Author: Michael G. Cottam

Publisher: World Scientific

Published: 1994

Total Pages: 484

ISBN-13: 9789810210069

DOWNLOAD EBOOK

In the past few years, there has been a rapidly growing interest in the properties of spin waves (or magnons) in ordered magnetic materials. These are the low-lying excitations that characterize the dynamical behavior of the magnetization variables in ferromagnets, ferrimagnets and antiferromagnets, particularly at low temperatures. Many of the recent developments concerning spin waves have been directed towards understanding their behavior in limited magnetic samples. At the same time, there have been dramatic advances in the experimental techniques, both for preparing high-quality magnetic samples in the form of thin films and superlattices and for the study of the spin-wave excitations themselves. Magnetic thin films have long been of technological as well as scientific interest and an understanding of both the linear and nonlinear aspects of their magnetic behavior is important.


Quantum Theory of Angular Momentum

Quantum Theory of Angular Momentum

Author: Dmitriĭ Aleksandrovich Varshalovich

Publisher: World Scientific Publishing Company Incorporated

Published: 1988

Total Pages: 514

ISBN-13: 9789971501075

DOWNLOAD EBOOK

Ch. 1. Elements of vector and tensor theory -- ch. 2. Angular momentum operators -- ch. 3. Irreducible tensors -- ch. 4. Wigner D-functions -- ch. 5. Spherical harmonics -- ch. 6. Spin functions -- ch. 7. Tensor spherical harmonics -- ch. 8. Clebsch-Gordan coefficients and 3jm symbols -- ch. 9. 6j symbols and the Racah coefficients -- ch. 10. 9j and 12j symbols -- ch. 11. The graphical method in angular momentum theory -- ch. 12. Sums involving vector addition and recoupling coefficients -- ch. 13. matrix elements of irreducible tensor operators


Spin Waves and Magnetic Excitations

Spin Waves and Magnetic Excitations

Author:

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 512

ISBN-13: 044459826X

DOWNLOAD EBOOK

Modern Problems in Condensed Matter Sciences, Volume 22.2: Spin Waves and Magnetic Excitations focuses on the processes, methodologies, reactions, principles, and approaches involved in spin waves and magnetic excitations, including magnetic systems, fluctuations, resonance, and spin dynamics. The selection first elaborates on spin-wave resonance in metals, excitations in low-dimensional magnetic systems, and the theory of magnetic excitations in disordered systems. Topics include spin waves in ferromagnets with weak fluctuations of the exchange interaction; dynamics of propagating excitations; models of two-dimensional magnetic systems; spin-wave resonance in bulk metals; and standing spin-wave resonance in thin films. The manuscript then ponders on spin dynamics of amorphous magnets and magnetic excitations in spin glasses, including dynamics in reentrant spin glasses, dynamics of classical spin glasses, spin dynamical theory, spin dynamics of locally isotropic materials, and effects of dilution. The book takes a look at nuclear spin and magnetoelastic excitations and magnetic impuritons in antiferromagnetic dielectric crystals. Discussions focus on coherent and incoherent impurity excitations, equations of motion and the energy of a magnetoelastic medium, magnetoelastic excitations near magnetic orientational phase transitions, and the effect of frequency pulling on the behavior of nuclear spin echo signals. The selection is a vital source of data for researchers interested in spin waves and magnetic excitations.


Spin Wave Confinement

Spin Wave Confinement

Author: Sergej O. Demokritov

Publisher: CRC Press

Published: 2019-05-08

Total Pages: 240

ISBN-13: 9814241202

DOWNLOAD EBOOK

This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role for description of very small systems.Spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, most of which will be addressed in this book. The book includes six chapters which originate from different groups of experimentalists and theoreticians dominating the field since the discovery of the effect. Different chapters of the book reflect different facets of spin wave confinement, providing a comprehensive description of the effect and its place in modern magnetism. It will be of value for scientists and engineers working on magnetic storage elements and magnetic logic, and is also suitable as an advanced textbook for graduate students.


Handbook of Thin Films

Handbook of Thin Films

Author: Hari Singh Nalwa

Publisher: Elsevier

Published: 2001-11-17

Total Pages: 3436

ISBN-13: 0080533248

DOWNLOAD EBOOK

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.