With the proliferation of mobile devices and hearing devices, including hearing aids and cochlear implants, there is a growing and pressing need to design algorithms that can improve speech intelligibility without sacrificing quality. Responding to this need, Speech Enhancement: Theory and Practice, Second Edition introduces readers to the basic pr
We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field. TOC:Introduction.- Study of the Wiener Filter for Noise Reduction.- Statistical Methods for the Enhancement of Noisy Speech.- Single- und Multi-Microphone Spectral Amplitude Estimation Using a Super-Gaussian Speech Model.- From Volatility Modeling of Financial Time-Series to Stochastic Modeling and Enhancement of Speech Signals.- Single-Microphone Noise Suppression for 3G Handsets Based on Weighted Noise Estimation.- Signal Subspace Techniques for Speech Enhancement.- Speech Enhancement: Application of the Kalman Filter in the Estimate-Maximize (EM) Framework.- Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.- Adpative Microphone Arrays Employing Spatial Quadratic Soft Constraints and Spectral Shaping.- Single-Microphone Blind Dereverberation.- Separation and Dereverberation of Speech Signals with Multiple Microphones.- Frequency-Domain Blind Source Separation.- Subband Based Blind Source Separation.- Real-Time Blind Source Separation for Moving Speech Signals.- Separation of Speech by Computational Auditory Scene Analysis
Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.
Speech enhancement is a classical problem in signal processing, yet still largely unsolved. Two of the conventional approaches for solving this problem are linear filtering, like the classical Wiener filter, and subspace methods. These approaches have traditionally been treated as different classes of methods and have been introduced in somewhat different contexts. Linear filtering methods originate in stochastic processes, while subspace methods have largely been based on developments in numerical linear algebra and matrix approximation theory. This book bridges the gap between these two classes of methods by showing how the ideas behind subspace methods can be incorporated into traditional linear filtering. In the context of subspace methods, the enhancement problem can then be seen as a classical linear filter design problem. This means that various solutions can more easily be compared and their performance bounded and assessed in terms of noise reduction and speech distortion. The book shows how various filter designs can be obtained in this framework, including the maximum SNR, Wiener, LCMV, and MVDR filters, and how these can be applied in various contexts, like in single-channel and multichannel speech enhancement, and in both the time and frequency domains. - First short book treating subspace approaches in a unified way for time and frequency domains, single-channel, multichannel, as well as binaural, speech enhancement - Bridges the gap between optimal filtering methods and subspace approaches - Includes original presentation of subspace methods from different perspectives
With the proliferation of mobile devices and hearing devices, including hearing aids and cochlear implants, there is a growing and pressing need to design algorithms that can improve speech intelligibility without sacrificing quality. Responding to this need, Speech Enhancement: Theory and Practice, Second Edition introduces readers to the basic problems of speech enhancement and the various algorithms proposed to solve these problems. Updated and expanded, this second edition of the bestselling textbook broadens its scope to include evaluation measures and enhancement algorithms aimed at improving speech intelligibility. Fundamentals, Algorithms, Evaluation, and Future Steps Organized into four parts, the book begins with a review of the fundamentals needed to understand and design better speech enhancement algorithms. The second part describes all the major enhancement algorithms and, because these require an estimate of the noise spectrum, also covers noise estimation algorithms. The third part of the book looks at the measures used to assess the performance, in terms of speech quality and intelligibility, of speech enhancement methods. It also evaluates and compares several of the algorithms. The fourth part presents binary mask algorithms for improving speech intelligibility under ideal conditions. In addition, it suggests steps that can be taken to realize the full potential of these algorithms under realistic conditions. What’s New in This Edition Updates in every chapter A new chapter on objective speech intelligibility measures A new chapter on algorithms for improving speech intelligibility Real-world noise recordings (on accompanying CD) MATLAB® code for the implementation of intelligibility measures (on accompanying CD) MATLAB and C/C++ code for the implementation of algorithms to improve speech intelligibility (on accompanying CD) Valuable Insights from a Pioneer in Speech Enhancement Clear and concise, this book explores how human listeners compensate for acoustic noise in noisy environments. Written by a pioneer in speech enhancement and noise reduction in cochlear implants, it is an essential resource for anyone who wants to implement or incorporate the latest speech enhancement algorithms to improve the quality and intelligibility of speech degraded by noise. Includes a CD with Code and Recordings The accompanying CD provides MATLAB implementations of representative speech enhancement algorithms as well as speech and noise databases for the evaluation of enhancement algorithms.
This book provides various speech enhancement algorithms for digital hearing aids. It covers information on noise signals extracted from silences of speech signal. The description of the algorithm used for this purpose is also provided. Different types of adaptive filters such as Least Mean Squares (LMS), Normalized LMS (NLMS) and Recursive Lease Squares (RLS) are described for noise reduction in the speech signals. Different types of noises are taken to generate noisy speech signals, and therefore information on various noises signals is provided. The comparative performance of various adaptive filters for noise reduction in speech signals is also described. In addition, the book provides a speech enhancement technique using adaptive filtering and necessary frequency strength enhancement using wavelet transform as per the requirement of audiogram for digital hearing aids. Presents speech enhancement techniques for improving performance of digital hearing aids; Covers various types of adaptive filters and their advantages and limitations; Provides a hybrid speech enhancement technique using wavelet transform and adaptive filters.
A strong reference on the problem of signal and speech enhancement, describing the newest developments in this exciting field. The general emphasis is on noise reduction, because of the large number of applications that can benefit from this technology.
Outlines the significant advances that have been made during the last decade in the field of discrete Fourier transform domain-based single-channel noise reduction for speech enhancement. Furthermore, the book provides a concise description of a state-of-the-art speech enhancement system, and demonstrates the relative importance of the various building blocks of such a system.
Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.
The enormous advances in digital signal processing (DSP) technology have contributed to the wide dissemination and success of speech communication devices – be it GSM and UMTS mobile telephones, digital hearing aids, or human-machine interfaces. Digital speech transmission techniques play an important role in these applications, all the more because high quality speech transmission remains essential in all current and next generation communication networks. Enhancement, coding and error concealment techniques improve the transmitted speech signal at all stages of the transmission chain, from the acoustic front-end to the sound reproduction at the receiver. Advanced speech processing algorithms help to mitigate a number of physical and technological limitations such as background noise, bandwidth restrictions, shortage of radio frequencies, and transmission errors. Digital Speech Transmission provides a single-source, comprehensive guide to the fundamental issues, algorithms, standards, and trends in speech signal processing and speech communication technology. The authors give a solid, accessible overview of fundamentals of speech signal processing speech coding, including new speech coders for GSM and UMTS error concealment by soft decoding artificial bandwidth extension of speech signals single and multi-channel noise reduction acoustic echo cancellation This text is an invaluable resource for engineers, researchers, academics, and graduate students in the areas of communications, electrical engineering, and information technology.