Spectral Theory & Computational Methods of Sturm-Liouville Problems

Spectral Theory & Computational Methods of Sturm-Liouville Problems

Author: Don Hinton

Publisher: CRC Press

Published: 2021-02-27

Total Pages: 414

ISBN-13: 1000657760

DOWNLOAD EBOOK

Presenting the proceedings of the conference on Sturm-Liouville problems held in conjunction with the 26th Barrett Memorial Lecture Series at the University of Tennessee, Knoxville, this text covers both qualitative and computational theory of Sturm-Liouville problems. It surveys questions in the field as well as describing applications and concepts.


Spectral Theory & Computational Methods of Sturm-Liouville Problems

Spectral Theory & Computational Methods of Sturm-Liouville Problems

Author: Don Hinton

Publisher: CRC Press

Published: 1997-05-06

Total Pages: 422

ISBN-13: 9780824700300

DOWNLOAD EBOOK

Presenting the proceedings of the conference on Sturm-Liouville problems held in conjunction with the 26th Barrett Memorial Lecture Series at the University of Tennessee, Knoxville, this text covers both qualitative and computational theory of Sturm-Liouville problems. It surveys questions in the field as well as describing applications and concepts.


Sturm-Liouville Theory

Sturm-Liouville Theory

Author: Werner O. Amrein

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 348

ISBN-13: 3764373598

DOWNLOAD EBOOK

This is a collection of survey articles based on lectures presented at a colloquium and workshop in Geneva in 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm. It aims at giving an overview of the development of Sturm-Liouville theory from its historical roots to present day research. It is the first time that such a comprehensive survey has been made available in compact form. The contributions come from internationally renowned experts and cover a wide range of developments of the theory. The book can therefore serve both as an introduction to Sturm-Liouville theory and as background for ongoing research. The volume is addressed to researchers in related areas, to advanced students and to those interested in the historical development of mathematics. The book will also be of interest to those involved in applications of the theory to diverse areas such as engineering, fluid dynamics and computational spectral analysis.


Sturm-Liouville Theory

Sturm-Liouville Theory

Author: Anton Zettl

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 346

ISBN-13: 0821852671

DOWNLOAD EBOOK

In 1836-1837 Sturm and Liouville published a series of papers on second order linear ordinary differential operators, which started the subject now known as the Sturm-Liouville problem. In 1910 Hermann Weyl published an article which started the study of singular Sturm-Liouville problems. Since then, the Sturm-Liouville theory remains an intensely active field of research, with many applications in mathematics and mathematical physics. The purpose of the present book is (a) to provide a modern survey of some of the basic properties of Sturm-Liouville theory and (b) to bring the reader to the forefront of knowledge about some aspects of this theory. To use the book, only a basic knowledge of advanced calculus and a rudimentary knowledge of Lebesgue integration and operator theory are assumed. An extensive list of references and examples is provided and numerous open problems are given. The list of examples includes those classical equations and functions associated with the names of Bessel, Fourier, Heun, Ince, Jacobi, Jorgens, Latzko, Legendre, Littlewood-McLeod, Mathieu, Meissner, Morse, as well as examples associated with the harmonic oscillator and the hydrogen atom. Many special functions of applied mathematics and mathematical physics occur in these examples.


Ordinary Differential Operators

Ordinary Differential Operators

Author: Aiping Wang

Publisher: American Mathematical Soc.

Published: 2019-11-08

Total Pages: 269

ISBN-13: 1470453665

DOWNLOAD EBOOK

In 1910 Herman Weyl published one of the most widely quoted papers of the 20th century in Analysis, which initiated the study of singular Sturm-Liouville problems. The work on the foundations of Quantum Mechanics in the 1920s and 1930s, including the proof of the spectral theorem for unbounded self-adjoint operators in Hilbert space by von Neumann and Stone, provided some of the motivation for the study of differential operators in Hilbert space with particular emphasis on self-adjoint operators and their spectrum. Since then the topic developed in several directions and many results and applications have been obtained. In this monograph the authors summarize some of these directions discussing self-adjoint, symmetric, and dissipative operators in Hilbert and Symplectic Geometry spaces. Part I of the book covers the theory of differential and quasi-differential expressions and equations, existence and uniqueness of solutions, continuous and differentiable dependence on initial data, adjoint expressions, the Lagrange Identity, minimal and maximal operators, etc. In Part II characterizations of the symmetric, self-adjoint, and dissipative boundary conditions are established. In particular, the authors prove the long standing Deficiency Index Conjecture. In Part III the symmetric and self-adjoint characterizations are extended to two-interval problems. These problems have solutions which have jump discontinuities in the interior of the underlying interval. These jumps may be infinite at singular interior points. Part IV is devoted to the construction of the regular Green's function. The construction presented differs from the usual one as found, for example, in the classical book by Coddington and Levinson.


High-Precision Methods in Eigenvalue Problems and Their Applications

High-Precision Methods in Eigenvalue Problems and Their Applications

Author: Leonid D. Akulenko

Publisher: CRC Press

Published: 2004-10-15

Total Pages: 260

ISBN-13: 113439022X

DOWNLOAD EBOOK

This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high


Advances in Applied Mathematics and Approximation Theory

Advances in Applied Mathematics and Approximation Theory

Author: George A. Anastassiou

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 494

ISBN-13: 1461463939

DOWNLOAD EBOOK

Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 is a collection of the best articles presented at “Applied Mathematics and Approximation Theory 2012,” an international conference held in Ankara, Turkey, May 17-20, 2012. This volume brings together key work from authors in the field covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. The collection will be a useful resource for researchers in applied mathematics, engineering and statistics.​


Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra

Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra

Author: William Norrie Everitt

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 79

ISBN-13: 0821826697

DOWNLOAD EBOOK

A multi-interval quasi-differential system $\{I_{r},M_{r},w_{r}:r\in\Omega\}$ consists of a collection of real intervals, $\{I_{r}\}$, as indexed by a finite, or possibly infinite index set $\Omega$ (where $\mathrm{card} (\Omega)\geq\aleph_{0}$ is permissible), on which are assigned ordinary or quasi-differential expressions $M_{r}$ generating unbounded operators in the Hilbert function spaces $L_{r}^{2}\equiv L^{2}(I_{r};w_{r})$, where $w_{r}$ are given, non-negative weight functions. For each fixed $r\in\Omega$ assume that $M_{r}$ is Lagrange symmetric (formally self-adjoint) on $I_{r}$ and hence specifies minimal and maximal closed operators $T_{0,r}$ and $T_{1,r}$, respectively, in $L_{r}^{2}$. However the theory does not require that the corresponding deficiency indices $d_{r}^{-}$ and $d_{r}^{+}$ of $T_{0,r}$ are equal (e. g. the symplectic excess $Ex_{r}=d_{r}^{+}-d_{r}^{-}\neq 0$), in which case there will not exist any self-adjoint extensions of $T_{0,r}$ in $L_{r}^{2}$. In this paper a system Hilbert space $\mathbf{H}:=\sum_{r\,\in\,\Omega}\oplus L_{r}^{2}$ is defined (even for non-countable $\Omega$) with corresponding minimal and maximal system operators $\mathbf{T}_{0}$ and $\mathbf{T}_{1}$ in $\mathbf{H}$. Then the system deficiency indices $\mathbf{d}^{\pm} =\sum_{r\,\in\,\Omega}d_{r}^{\pm}$ are equal (system symplectic excess $Ex=0$), if and only if there exist self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$ in $\mathbf{H}$. The existence is shown of a natural bijective correspondence between the set of all such self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$, and the set of all complete Lagrangian subspaces $\mathsf{L}$ of the system boundary complex symplectic space $\mathsf{S}=\mathbf{D(T}_{1})/\mathbf{D(T}_{0})$. This result generalizes the earlier symplectic version of the celebrated GKN-Theorem for single interval systems to multi-interval systems. Examples of such complete Lagrangians, for both finite and infinite dimensional complex symplectic $\mathsf{S}$, illuminate new phenoma for the boundary value problems of multi-interval systems. These concepts have applications to many-particle systems of quantum mechanics, and to other physical problems.


Hyperbolic Differential Operators And Related Problems

Hyperbolic Differential Operators And Related Problems

Author: Vincenzo Ancona

Publisher: CRC Press

Published: 2003-03-06

Total Pages: 390

ISBN-13: 9780203911143

DOWNLOAD EBOOK

Presenting research from more than 30 international authorities, this reference provides a complete arsenal of tools and theorems to analyze systems of hyperbolic partial differential equations. The authors investigate a wide variety of problems in areas such as thermodynamics, electromagnetics, fluid dynamics, differential geometry, and topology. Renewing thought in the field of mathematical physics, Hyperbolic Differential Operators defines the notion of pseudosymmetry for matrix symbols of order zero as well as the notion of time function. Surpassing previously published material on the topic, this text is key for researchers and mathematicians specializing in hyperbolic, Schrödinger, Einstein, and partial differential equations; complex analysis; and mathematical physics.


Boundary Value Problems, Weyl Functions, and Differential Operators

Boundary Value Problems, Weyl Functions, and Differential Operators

Author: Jussi Behrndt

Publisher: Springer Nature

Published: 2020-01-03

Total Pages: 775

ISBN-13: 3030367142

DOWNLOAD EBOOK

This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.