International Conference on Differential Equations

International Conference on Differential Equations

Author: H.A. Antosiewicz

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 857

ISBN-13: 1483259137

DOWNLOAD EBOOK

International Conference on Differential Equations contains the proceedings of an International Conference on Differential Equations held at the University of Southern California, on September 3-7, 1974. The papers review advances in the qualitative-analytic theory of differential equations and highlight three broad areas: analytic theory (singular perturbations), qualitative theory (boundary value problems), and mathematical control theory (variational methods). Comprised of 82 chapters, this book begins with a discussion on continuous extensions, their construction, and their application in the theory of differential equations. The reader is then introduced to an approach to boundary control of partial differential equations based on the theory of semigroups of operators; lower closure and existence theorems in optimal control; and a nonlinear oscillation theorem. Subsequent chapters focus on matrices of rational functions; asymptotic integration of linear differential systems; solutions near bifurcated steady states; and geometric views in existence theory. This monograph will be of interest to students and instructors of mathematics.


Asymptotic Behavior and Stability Problems in Ordinary Differential Equations

Asymptotic Behavior and Stability Problems in Ordinary Differential Equations

Author: Lamberto Cesari

Publisher: Springer

Published: 2013-11-09

Total Pages: 278

ISBN-13: 3662403684

DOWNLOAD EBOOK

In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call "qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications.


Almost Periodic Solutions of Differential Equations in Banach Spaces

Almost Periodic Solutions of Differential Equations in Banach Spaces

Author: Yoshiyuki Hino

Publisher: CRC Press

Published: 2001-10-25

Total Pages: 276

ISBN-13: 9780415272667

DOWNLOAD EBOOK

This monograph presents recent developments in spectral conditions for the existence of periodic and almost periodic solutions of inhomogenous equations in Banach Spaces. Many of the results represent significant advances in this area. In particular, the authors systematically present a new approach based on the so-called evolution semigroups with an original decomposition technique. The book also extends classical techniques, such as fixed points and stability methods, to abstract functional differential equations with applications to partial functional differential equations. Almost Periodic Solutions of Differential Equations in Banach Spaces will appeal to anyone working in mathematical analysis.


The Asymptotic Behaviour of Semigroups of Linear Operators

The Asymptotic Behaviour of Semigroups of Linear Operators

Author: Jan van Neerven

Publisher: Springer Science & Business Media

Published: 1996-07-30

Total Pages: 268

ISBN-13: 9783764354558

DOWNLOAD EBOOK

This book presents a systematic account of the theory of asymptotic behaviour of semigroups of linear operators acting in a Banach space. The focus is on the relationship between asymptotic behaviour of the semigroup and spectral properties of its infinitesimal generator. The most recent developments in the field are included, such as the Arendt-Batty-Lyubich-Vu theorem, the spectral mapp- ing theorem of Latushkin and Montgomery-Smith, Weis's theorem on stability of positive semigroup in Lp-spaces, the stability theorem for semigroups whose resolvent is bounded in a half-plane, and a systematic theory of individual stability. Addressed to researchers and graduate students with interest in the fields of operator semigroups and evolution equations, this book is self-contained and provides complete proofs.


Mathematical Sciences with Multidisciplinary Applications

Mathematical Sciences with Multidisciplinary Applications

Author: Bourama Toni

Publisher: Springer

Published: 2016-08-19

Total Pages: 654

ISBN-13: 3319313231

DOWNLOAD EBOOK

This book is the fourth in a multidisciplinary series which brings together leading researchers in the STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health) to present their perspective on advances in their own specific fields, and to generate a genuinely interdisciplinary collaboration that transcends parochial subject-matter boundaries. All contributions are carefully edited, peer-reviewed, reasonably self-contained, and pedagogically crafted for a multidisciplinary readership. Contributions are drawn from a variety of fields including mathematics, statistics, game theory and behavioral sciences, biomathematics and physical chemistry, computer science and human-centered computing. This volume is dedicated to Professor Christiane Rousseau, whose work inspires the STEAM-H series, in recognition of her passion for the mathematical sciences and her on-going initiative, the Mathematics of Planet Earth paradigm of interdisciplinarity. The volume's primary goal is to enhance interdisciplinary understanding between these areas of research by showing how new advances in a particular field can be relevant to open problems in another and how many disciplines contribute to a better understanding of relevant issues at the interface of mathematics and the sciences. The main emphasis is on important methods, research directions and applications of analysis within and beyond each field. As such, the volume aims to foster student interest and participation in the STEAM-H domain, as well as promote interdisciplinary research collaborations. The volume is valuable as a reference of choice and a source of inspiration for a broad spectrum of scientists, mathematicians, research students and postdoctoral fellows.


Almost Periodic and Almost Automorphic Functions in Abstract Spaces

Almost Periodic and Almost Automorphic Functions in Abstract Spaces

Author: Gaston M. N'Guérékata

Publisher: Springer Nature

Published: 2021-05-28

Total Pages: 134

ISBN-13: 3030737187

DOWNLOAD EBOOK

This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.


Volterra and Functional Differential Equations

Volterra and Functional Differential Equations

Author: Kenneth B. Hannsgen

Publisher: CRC Press

Published: 1982-10-25

Total Pages: 356

ISBN-13: 9780824717216

DOWNLOAD EBOOK

This book contains twenty four papers, presented at the conference on Volterra and Functional Differential Equations held in Virginia in 1981, on various topics, including Liapunov stability, Volterra equations, integral equations, and functional differential equations.


Functional Analytic Methods for Evolution Equations

Functional Analytic Methods for Evolution Equations

Author: Giuseppe Da Prato

Publisher: Springer

Published: 2004-08-30

Total Pages: 478

ISBN-13: 3540446532

DOWNLOAD EBOOK

This book consists of five introductory contributions by leading mathematicians on the functional analytic treatment of evolutions equations. In particular the contributions deal with Markov semigroups, maximal L^p-regularity, optimal control problems for boundary and point control systems, parabolic moving boundary problems and parabolic nonautonomous evolution equations. The book is addressed to PhD students, young researchers and mathematicians doing research in one of the above topics.


Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications

Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications

Author: Janusz Mierczynski

Publisher: CRC Press

Published: 2008-03-24

Total Pages: 333

ISBN-13: 1584888962

DOWNLOAD EBOOK

Providing a basic tool for studying nonlinear problems, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications focuses on the principal spectral theory for general time-dependent and random parabolic equations and systems. The text contains many new results and considers existing results from a fresh perspective.


Sturm?Liouville Operators, Their Spectral Theory, and Some Applications

Sturm?Liouville Operators, Their Spectral Theory, and Some Applications

Author: Fritz Gesztesy

Publisher: American Mathematical Society

Published: 2024-09-24

Total Pages: 946

ISBN-13: 1470476665

DOWNLOAD EBOOK

This book provides a detailed treatment of the various facets of modern Sturm?Liouville theory, including such topics as Weyl?Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm?Liouville operators, strongly singular Sturm?Liouville differential operators, generalized boundary values, and Sturm?Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin?Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten?von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein?von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna?Herglotz functions, and Bessel functions.