Spectrum Estimation and System Identification

Spectrum Estimation and System Identification

Author: S.Unnikrishna Pillai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 337

ISBN-13: 1461383188

DOWNLOAD EBOOK

Spectrum estimation refers to analyzing the distribution of power or en ergy with frequency of the given signal, and system identification refers to ways of characterizing the mechanism or system behind the observed sig nal/data. Such an identification allows one to predict the system outputs, and as a result this has considerable impact in several areas such as speech processing, pattern recognition, target identification, seismology, and signal processing. A new outlook to spectrum estimation and system identification is pre sented here by making use of the powerful concepts of positive functions and bounded functions. An indispensable tool in classical network analysis and synthesis problems, positive functions and bounded functions are well and their intimate one-to-one connection with power spectra understood, makes it possible to study many of the signal processing problems from a new viewpoint. Positive functions have been used to study interpolation problems in the past, and although the spectrum extension problem falls within this scope, surprisingly the system identification problem can also be analyzed in this context in an interesting manner. One useful result in this connection is regarding rational and stable approximation of nonrational transfer functions both in the single-channel case and the multichannel case. Such an approximation has important applications in distributed system theory, simulation of systems governed by partial differential equations, and analysis of differential equations with delays. This book is intended as an introductory graduate level textbook and as a reference book for engineers and researchers.


Digital Spectral Analysis

Digital Spectral Analysis

Author: S. Lawrence Marple, Jr.

Publisher: Courier Dover Publications

Published: 2019-03-20

Total Pages: 435

ISBN-13: 048678052X

DOWNLOAD EBOOK

Digital Spectral Analysis offers a broad perspective of spectral estimation techniques and their implementation. Coverage includes spectral estimation of discrete-time or discrete-space sequences derived by sampling continuous-time or continuous-space signals. The treatment emphasizes the behavior of each spectral estimator for short data records and provides over 40 techniques described and available as implemented MATLAB functions. In addition to summarizing classical spectral estimation, this text provides theoretical background and review material in linear systems, Fourier transforms, matrix algebra, random processes, and statistics. Topics include Prony's method, parametric methods, the minimum variance method, eigenanalysis-based estimators, multichannel methods, and two-dimensional methods. Suitable for advanced undergraduates and graduate students of electrical engineering — and for scientific use in the signal processing application community outside of universities — the treatment's prerequisites include some knowledge of discrete-time linear system and transform theory, introductory probability and statistics, and linear algebra. 1987 edition.


Spectral Analysis of Signals

Spectral Analysis of Signals

Author: Yanwei Wang

Publisher: Morgan & Claypool Publishers

Published: 2005

Total Pages: 108

ISBN-13: 1598290002

DOWNLOAD EBOOK

Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.


Introduction to Spectral Analysis

Introduction to Spectral Analysis

Author: Petre Stoica

Publisher: Pearson Education

Published: 1997

Total Pages: 358

ISBN-13:

DOWNLOAD EBOOK

This book presents an introduction to spectral analysis that is designed for either course use or self-study. Clear and concise in approach, it develops a firm understanding of tools and techniques as well as a solid background for performing research. Topics covered include nonparametric spectrum analysis (both periodogram-based approaches and filter- bank approaches), parametric spectral analysis using rational spectral models (AR, MA, and ARMA models), parametric method for line spectra, and spatial (array) signal processing. Analytical and Matlab-based computer exercises are included to develop both analytical skills and hands-on experience.


Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Author: K. Dzhaparidze

Publisher: Springer Science & Business Media

Published: 1986

Total Pages: 346

ISBN-13: 9780387961415

DOWNLOAD EBOOK

. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1


Spectral Analysis for Physical Applications

Spectral Analysis for Physical Applications

Author: Donald B. Percival

Publisher: Cambridge University Press

Published: 1993-06-03

Total Pages: 616

ISBN-13: 9780521435413

DOWNLOAD EBOOK

This book is an up-to-date introduction to univariate spectral analysis at the graduate level, which reflects a new scientific awareness of spectral complexity, as well as the widespread use of spectral analysis on digital computers with considerable computational power. The text provides theoretical and computational guidance on the available techniques, emphasizing those that work in practice. Spectral analysis finds extensive application in the analysis of data arising in many of the physical sciences, ranging from electrical engineering and physics to geophysics and oceanography. A valuable feature of the text is that many examples are given showing the application of spectral analysis to real data sets. Special emphasis is placed on the multitaper technique, because of its practical success in handling spectra with intricate structure, and its power to handle data with or without spectral lines. The text contains a large number of exercises, together with an extensive bibliography.