Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)

Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)

Author: Norbert Herencsar

Publisher: MDPI

Published: 2019-07-01

Total Pages: 194

ISBN-13: 3039210408

DOWNLOAD EBOOK

This Special Issue contains a series of excellent research works on telecommunications and signal processing, selected from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP) which was held on July 4–6, 2018, in Athens, Greece. The conference was organized in cooperation with the IEEE Region 8 (Europe, Middle East, and Africa), IEEE Greece Section, IEEE Czechoslovakia Section, and IEEE Czechoslovakia Section SP/CAS/COM Joint Chapter by seventeen universities from the Czech Republic, Hungary, Turkey, Taiwan, Japan, Slovak Republic, Spain, Bulgaria, France, Slovenia, Croatia, and Poland, for academics, researchers, and developers, and serves as a premier international forum for the annual exchange and promotion of the latest advances in telecommunication technology and signal processing. The aim of the conference is to bring together both novice and experienced scientists, developers, and specialists, to meet new colleagues, collect new ideas, and establish new cooperation between research groups from universities, research centers, and private sectors worldwide. This collection of 10 papers is highly recommended for researchers, and believed to be interesting, inspiring, and motivating for readers in their further research.


Compressed Sensing

Compressed Sensing

Author: Yonina C. Eldar

Publisher: Cambridge University Press

Published: 2012-05-17

Total Pages: 557

ISBN-13: 1107394392

DOWNLOAD EBOOK

Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.


Financial Signal Processing and Machine Learning

Financial Signal Processing and Machine Learning

Author: Ali N. Akansu

Publisher: John Wiley & Sons

Published: 2016-04-21

Total Pages: 312

ISBN-13: 1118745639

DOWNLOAD EBOOK

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.


Time-Frequency Signal Analysis and Processing

Time-Frequency Signal Analysis and Processing

Author: Boualem Boashash

Publisher: Academic Press

Published: 2015-12-11

Total Pages: 1070

ISBN-13: 0123985250

DOWNLOAD EBOOK

Time-Frequency Signal Analysis and Processing (TFSAP) is a collection of theory, techniques and algorithms used for the analysis and processing of non-stationary signals, as found in a wide range of applications including telecommunications, radar, and biomedical engineering. This book gives the university researcher and R&D engineer insights into how to use TFSAP methods to develop and implement the engineering application systems they require. New to this edition: - New sections on Efficient and Fast Algorithms; a "Getting Started" chapter enabling readers to start using the algorithms on simulated and real examples with the TFSAP toolbox, compare the results with the ones presented in the book and then insert the algorithms in their own applications and adapt them as needed. - Two new chapters and twenty three new sections, including updated references. - New topics including: efficient algorithms for optimal TFDs (with source code), the enhanced spectrogram, time-frequency modelling, more mathematical foundations, the relationships between QTFDs and Wavelet Transforms, new advanced applications such as cognitive radio, watermarking, noise reduction in the time-frequency domain, algorithms for Time-Frequency Image Processing, and Time-Frequency applications in neuroscience (new chapter). - A comprehensive tutorial introduction to Time-Frequency Signal Analysis and Processing (TFSAP), accessible to anyone who has taken a first course in signals - Key advances in theory, methodology and algorithms, are concisely presented by some of the leading authorities on the respective topics - Applications written by leading researchers showing how to use TFSAP methods


Translocator Protein (TSPO)

Translocator Protein (TSPO)

Author: Giovanni Natile

Publisher: MDPI

Published: 2018-03-05

Total Pages: 177

ISBN-13: 3038427578

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Translocator Protein (TSPO)" that was published in IJMS


Digital Signal Processing with Kernel Methods

Digital Signal Processing with Kernel Methods

Author: Jose Luis Rojo-Alvarez

Publisher: John Wiley & Sons

Published: 2018-02-05

Total Pages: 665

ISBN-13: 1118611799

DOWNLOAD EBOOK

A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.


Smart Healthcare Monitoring Using IoT with 5G

Smart Healthcare Monitoring Using IoT with 5G

Author: Meenu Gupta

Publisher: CRC Press

Published: 2021-12-23

Total Pages: 222

ISBN-13: 1000486435

DOWNLOAD EBOOK

Focusing on the challenges, directions, and future predictions with the role of 5G in smart healthcare monitoring, this book offers the fundamental concepts and analyses on the methods to apply Internet of Things (IoT) in monitoring devices for diagnosing and transferring data. It also discusses self-managing to help providers improve their patients' healthcare experience. Smart Healthcare Monitoring Using IoT with 5G: Challenges, Directions, and Future Predictions illustrates user-focused wearable devices such as Fitbit health monitors and smartwatches by which consumers can self-manage and self-monitor their own health. The book covers new points of security and privacy concerns, with the expectation of IoT devices gaining more popularity within the next ten years. Case studies depicting applications and best practices as well as future predictions of smart healthcare monitoring by way of a 5G network are also included. Interested readers of this book include anyone working or involved in research in the field of smart healthcare, such as healthcare specialists, computer science engineers, electronics engineers, and pharmaceutical practitioners.