Extrapolation Methods

Extrapolation Methods

Author: C. Brezinski

Publisher: Elsevier

Published: 2013-10-24

Total Pages: 475

ISBN-13: 0080506224

DOWNLOAD EBOOK

This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided – including some never before published results and applications. Although intended for researchers in the field, and for those using extrapolation methods for solving particular problems, this volume also provides a valuable resource for graduate courses on the subject.


Pade Approximants

Pade Approximants

Author: George Allen Baker

Publisher: Cambridge University Press

Published: 1996-01-26

Total Pages: 762

ISBN-13: 0521450071

DOWNLOAD EBOOK

The first edition of this book was reviewed in 1982 as "the most extensive treatment of Pade approximants actually available." This second edition has been thoroughly updated, with a substantial new chapter on multiseries approximants. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, and computational methods. This succinct and straightforward treatment will appeal to scientists, engineers, and mathematicians alike.


Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2019-01-01

Total Pages: 377

ISBN-13: 1611975948

DOWNLOAD EBOOK

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.


Richardson Extrapolation

Richardson Extrapolation

Author: Zahari Zlatev

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-11-07

Total Pages: 310

ISBN-13: 3110533006

DOWNLOAD EBOOK

Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions