Particle Technology and Engineering

Particle Technology and Engineering

Author: Jonathan P.K. Seville

Publisher: Butterworth-Heinemann

Published: 2016-05-20

Total Pages: 296

ISBN-13: 0080983448

DOWNLOAD EBOOK

Particle Technology and Engineering presents the basic knowledge and fundamental concepts that are needed by engineers dealing with particles and powders. The book provides a comprehensive reference and introduction to the topic, ranging from single particle characterization to bulk powder properties, from particle-particle interaction to particle-fluid interaction, from fundamental mechanics to advanced computational mechanics for particle and powder systems. The content focuses on fundamental concepts, mechanistic analysis and computational approaches. The first six chapters present basic information on properties of single particles and powder systems and their characterisation (covering the fundamental characteristics of bulk solids (powders) and building an understanding of density, surface area, porosity, and flow), as well as particle-fluid interactions, gas-solid and liquid-solid systems, with applications in fluidization and pneumatic conveying. The last four chapters have an emphasis on the mechanics of particle and powder systems, including the mechanical behaviour of powder systems during storage and flow, contact mechanics of particles, discrete element methods for modelling particle systems, and finite element methods for analysing powder systems. This thorough guide is beneficial to undergraduates in chemical and other types of engineering, to chemical and process engineers in industry, and early stage researchers. It also provides a reference to experienced researchers on mathematical and mechanistic analysis of particulate systems, and on advanced computational methods. Provides a simple introduction to core topics in particle technology: characterisation of particles and powders: interaction between particles, gases and liquids; and some useful examples of gas-solid and liquid-solid systems Introduces the principles and applications of two useful computational approaches: discrete element modelling and finite element modelling Enables engineers to build their knowledge and skills and to enhance their mechanistic understanding of particulate systems


Granulation

Granulation

Author: Agba D. Salman

Publisher: Elsevier

Published: 2006-11-24

Total Pages: 1403

ISBN-13: 0080467881

DOWNLOAD EBOOK

Granulation provides a complete and comprehensive introduction on the state-of-the-art of granulation and how it can be applied both in an academic context and from an industrial perspective. Coupling science and engineering practices it covers differing length scales from the sub-granule level through behaviour through single granules, to bulk granule behaviour and equipment design. With special focus on a wide range of industrially relevant areas from fertilizer production, through to pharmaceuticals. Experimental data is complemented by mathematical modelling in this emerging field, allowing for a greater understanding of the basis of particle products and this important industry sector.Four themes run through the book: 1. The Macro Scale processing for Granulation – including up to date descriptions of the methods used for granulation and how they come about and how to monitor – on-line these changes.2. The Applications of granulation from an industrial perspective, with current descriptive roles and how they are undertaken with relevance to industry, and effective properties.3. Mechanistic descriptions of granulation and the different rate processes occurring within the granulator. This includes methods of modelling the process using Population – Balance Equations, and Multi-level Computational Fluid Dynamics Models.4. The Micro Scale: Granules and Smaller, looking at single granules and there interactions and modelling, while also considering the structure of granules and their constituent liquid bridges. * Covers a wide range of subjects and industrial applications * Provides an understanding of current issues for industrial and academic environments* Allows the reader an understanding of the science behind engineered granulation processes


Gas-Particle and Granular Flow Systems

Gas-Particle and Granular Flow Systems

Author: Nan Gui

Publisher: Elsevier

Published: 2019-10-22

Total Pages: 386

ISBN-13: 0128163992

DOWNLOAD EBOOK

Gas-Particle and Granular Flow Systems: Coupled Numerical Methods and Applications breaks down complexities, details numerical methods (including basic theory, modeling and techniques in programming), and provides researchers with an introduction and starting point to each of the disciplines involved. As the modeling of gas-particle and granular flow systems is an emerging interdisciplinary field of study involving mathematics, numerical methods, computational science, and mechanical, chemical and nuclear engineering, this book provides an ideal resource for new researchers who are often intimidated by the complexities of fluid-particle, particle-particle, and particle-wall interactions in many disciplines. Presents the most recent advances in modeling of gas-particle and granular flow systems Features detailed and multidisciplinary case studies at the conclusion of each chapter to underscore key concepts Discusses coupled methods of particle and granular flow systems theory and includes advanced modeling tools and numerical techniques


Characterization and Control of Interfaces for High Quality Advanced Materials

Characterization and Control of Interfaces for High Quality Advanced Materials

Author: Kevin Ewsuk

Publisher: John Wiley & Sons

Published: 2012-04-11

Total Pages: 486

ISBN-13: 1118406044

DOWNLOAD EBOOK

Interface characterization and control are critical in the design and manufacture of high quality advanced materials, particularly, for nanomaterials. This proceedings features papers on interface science and technology that provide a unique and state-of-the art perspective on interface characterization and control. Articles from scientists and engineers from 11 different countries address interface control, high temperature interfaces, nanoparticle design, nanotechnology, suspension control, novel processing, particulate materials, microstructure, and hot gas cleaning. This unique volume will serve as a valuable reference for scientists and engineers interested in interfaces, particulate materials, and nanotechnology. Proceedings of the International Conference on ICCCI 2003, Kurashiki, Japan, 2003; Ceramic Transactions, Volume 146.