Entropy in Dynamic Systems

Entropy in Dynamic Systems

Author: Jan Awrejcewicz

Publisher: MDPI

Published: 2019-10-16

Total Pages: 172

ISBN-13: 3039216163

DOWNLOAD EBOOK

In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.


Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-excited Attractors

Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-excited Attractors

Author: Christos Volos

Publisher: MDPI

Published: 2019-05-03

Total Pages: 290

ISBN-13: 3038978981

DOWNLOAD EBOOK

In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: self-excited attractors and hidden attractors. The localization of self-excited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with non-hyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phase-locked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with self-excited attractors and hidden attractors.


Deterministic Chaos In One Dimensional Continuous Systems

Deterministic Chaos In One Dimensional Continuous Systems

Author: Jan Awrejcewicz

Publisher: World Scientific

Published: 2016-03-14

Total Pages: 577

ISBN-13: 9814719714

DOWNLOAD EBOOK

This book focuses on the computational analysis of nonlinear vibrations of structural members (beams, plates, panels, shells), where the studied dynamical problems can be reduced to the consideration of one spatial variable and time. The reduction is carried out based on a formal mathematical approach aimed at reducing the problems with infinite dimension to finite ones. The process also includes a transition from governing nonlinear partial differential equations to a set of finite number of ordinary differential equations.Beginning with an overview of the recent results devoted to the analysis and control of nonlinear dynamics of structural members, placing emphasis on stability, buckling, bifurcation and deterministic chaos, simple chaotic systems are briefly discussed. Next, bifurcation and chaotic dynamics of the Euler-Bernoulli and Timoshenko beams including the geometric and physical nonlinearity as well as the elastic-plastic deformations are illustrated. Despite the employed classical numerical analysis of nonlinear phenomena, the various wavelet transforms and the four Lyapunov exponents are used to detect, monitor and possibly control chaos, hyper-chaos, hyper-hyper-chaos and deep chaos exhibited by rectangular plate-strips and cylindrical panels.The book is intended for post-graduate and doctoral students, applied mathematicians, physicists, teachers and lecturers of universities and companies dealing with a nonlinear dynamical system, as well as theoretically inclined engineers of mechanical and civil engineering.


Recent Advances in Nonlinear Dynamics and Synchronization

Recent Advances in Nonlinear Dynamics and Synchronization

Author: Kyandoghere Kyamakya

Publisher: Springer Science & Business Media

Published: 2009-09-28

Total Pages: 401

ISBN-13: 3642042260

DOWNLOAD EBOOK

The selected contributions of this book shed light on a series of interesting aspects related to nonlinear dynamics and synchronization with the aim of demonstrating some of their interesting applications in a series of selected disciplines. This book contains thirteenth chapters which are organized around five main parts. The first part (containing five chapters) does focus on theoretical aspects and recent trends of nonlinear dynamics and synchronization. The second part (two chapters) presents some modeling and simulation issues through concrete application examples. The third part (two chapters) is focused on the application of nonlinear dynamics and synchronization in transportation. The fourth part (two chapters) presents some applications of synchronization in security-related system concepts. The fifth part (two chapters) considers further applications areas, i.e. pattern recognition and communication engineering.


Journal of Vibration Testing and System Dynamics

Journal of Vibration Testing and System Dynamics

Author: Jan Awrejcewicz

Publisher: L& H Scientific Publishing

Published: 2018-07-01

Total Pages: 106

ISBN-13:

DOWNLOAD EBOOK

Vibration Testing and System Dynamics is an interdisciplinary journal serving as the forum for promoting dialogues among engineering practitioners and research scholars. As the platform for facilitating the synergy of system dynamics, testing, design, modeling, and education, the journal publishes high-quality, original articles in the theory and applications of dynamical system testing. The aim of the journal is to stimulate more research interest in and attention for the interaction of theory, design, and application in dynamic testing. Manuscripts reporting novel methodology design for modelling and testing complex dynamical systems with nonlinearity are solicited. Papers on applying modern theory of dynamics to real-world issues in all areas of physical science and description of numerical investigation are equally encouraged. Progress made in the following topics are of interest, but not limited, to the journal: Vibration testing and designDynamical systems and controlTesting instrumentation and controlComplex system dynamics in engineeringDynamic failure and fatigue theoryChemical dynamics and bio-systemsFluid dynamics and combustionPattern dynamicsNetwork dynamicsPlasma physics and plasma dynamicsControl signal synchronization and trackingBio-mechanical systems and devicesStructural and multi-body dynamicsFlow or heat-induced vibrationMass and energy transfer dynamicsWave propagation and testing


Bifurcation Control

Bifurcation Control

Author: Guanrong Chen

Publisher: Springer Science & Business Media

Published: 2003-08-26

Total Pages: 344

ISBN-13: 9783540403418

DOWNLOAD EBOOK

Bifurcation control refers to the task of designing a controller that can modify the bifurcation properties of a given nonlinear system, so as to achieve some desirable dynamical behaviors. There exists no similar control theory-oriented book available in the market that is devoted to the subject of bifurcation control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The book is not only aimed at active researchers in the field of bifurcation control and its applications, but also at a general audience in related fields.


Normal Modes and Localization in Nonlinear Systems

Normal Modes and Localization in Nonlinear Systems

Author: Alexander F. Vakakis

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 290

ISBN-13: 9401724520

DOWNLOAD EBOOK

The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.


Modeling, Simulation and Optimization of Complex Processes

Modeling, Simulation and Optimization of Complex Processes

Author: Hans Georg Bock

Publisher: Springer Science & Business Media

Published: 2012-02-03

Total Pages: 328

ISBN-13: 3642257070

DOWNLOAD EBOOK

This proceedings volume contains a selection of papers presented at the Fourth International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 2-6, 2009. The conference was organized by the Hanoi Institute of Mathematics, the Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, mechanics, biology and medicine, engineering, hydrology problems, transport, communication networks, production scheduling, industrial and commercial problems.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


System- and Data-Driven Methods and Algorithms

System- and Data-Driven Methods and Algorithms

Author: Peter Benner

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-11-08

Total Pages: 346

ISBN-13: 3110497719

DOWNLOAD EBOOK

An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.