This book presents articles from the International Conference on Improved Oil Recovery, CIOR 2017, held in Bandung, Indonesia. Highlighting novel technologies in the area of Improved Oil Recovery, it discusses a range of topics, including enhanced oil recovery, hydraulic fracturing, production optimization, petrophysics and formation evaluation.
Enhanced-Oil Recovery (EOR) evaluations focused on asset acquisition or rejuvenation involve a combination of complex decisions, using different data sources. EOR projects have been traditionally associated with high CAPEX and OPEX, as well as high financial risk, which tend to limit the number of EOR projects launched. In this book, the authors propose workflows for EOR evaluations that account for different volumes and quality of information. This flexible workflow has been successfully applied to oil property evaluations and EOR feasibility studies in many oil reservoirs. The methodology associated with the workflow relies on traditional (look-up tables, XY correlations, etc.) and more advanced (data mining for analog reservoir search and geology indicators) screening methods, emphasizing identification of analogues to support decision making. The screening phase is combined with analytical or simplified numerical simulations to estimate full-field performance by using reservoir data-driven segmentation procedures. - Case Studies form Asia, Canada, Mexico, South America and the United States - Assets evaluated include reservoir types ranging from oil sands to condensate reservoirs - Different stages of development and information availability are discussed
Reissuing works originally published between 1964 and 1994, this set of ten volumes is an excellent collection of works on energy – production and consumption, economics and policy, conservation and the crisis. International in scope, the volumes look at household energy conditions, energy in the developing world, political history and various other issues within the world of fuel and power. This set is a resource for environment studies, economics, policy and politics, sociology, geography and other studies considering the use of energy in our world.
Originally published in 1989. This book presents the situation regarding energy provision and policy in developing countries. It looks at Enhanced Oil Recovery, Hydropower and small energy packages suitable for rural areas including renewable energies and the various needs and systems affected such as water pumping and telecommunications. Each section is broken down into salient issues and information is provided on environmental issues, socioeconomic issues, costs and limitatioons and what is considered the state-of-the-art in each area. The final section offers a view of the application of computing technology in energy planning.
Chemical Methods, a new release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in one fast-growing area. Different techniques are described in addition to the latest technologies in data mining and hybrid processes. Beginning with an introduction to chemical concepts and polymer flooding, the book then focuses on more complex content, guiding readers into newer topics involving smart water injection and ionic liquids for EOR. Supported field case studies illustrate a bridge between research and practical application, thus making the book useful for academics and practicing engineers. This series delivers a multi-volume approach that addresses the latest research on various types of EOR. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest developments and field applications to drive innovation for the future of energy. - Presents the latest research and practical applications specific to chemical enhanced oil recovery methods - Helps users understand new research on available technology, including chemical flooding specific to unconventional reservoirs and hybrid chemical options - Includes additional methods, such as data mining applications and economic and environmental considerations
Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling, completion to production, processing, storage, and transportation. The third reference in the series, Recovery Improvement, delivers the critical chemical basics while also covering the latest research developments and practical solutions. Organized by the type of enhanced recovery approaches, this volume facilitates engineers to fully understand underlying theories, potential challenges, practical problems, and keys for successful deployment. In addition to the chemical, gas, and thermal methods, this reference volume also includes low-salinity (smart) water, microorganism- and nanofluid-based recovery enhancement, and chemical solutions for conformance control and water shutoff in near wellbore and deep in the reservoir. Supported by a list of contributing experts from both academia and industry, this book provides a necessary reference to bridge petroleum chemistry operations from theory into more cost-efficient and sustainable practical applications. - Covers background information and practical guidelines for various recovery enhancement domains, including chapters on enhanced oil recovery in unconventional reservoirs and carbon sequestration in CO2 gas flooding for more environment-friendly and more sustainable initiatives - Provides effective solutions to control chemistry-related issues and mitigation strategies for potential challenges from an industry list of experts and contributors - Delivers both up-to-date research developments and practical applications, featuring various case studies
This book offers practical concepts of EOR processes and summarizes the fundamentals of bioremediation of oil-contaminated sites. The first section presents a simplified description of EOR processes to boost the recovery of oil or to displace and produce the significant amounts of oil left behind in the reservoir during or after the course of any primary and secondary recovery process; it highlights the emerging EOR technological trends and the areas that need research and development; while the second section focuses on the use of biotechnology to remediate the inevitable environmental footprint of crude oil production; such is the case of accidental oil spills in marine, river, and land environments. The readers will gain useful and practical insights in these fields.
This book introduces numerous selected advanced topics in viscoelastic and viscoplastic materials. The book effectively blends theoretical, numerical, modeling and experimental aspects of viscoelastic and viscoplastic materials that are usually encountered in many research areas such as chemical, mechanical and petroleum engineering. The book consists of 14 chapters that can serve as an important reference for researchers and engineers working in the field of viscoelastic and viscoplastic materials.
Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. - Strikes an ideal balance between theory and practice - Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters - Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR